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Abstract— We consider the problem of controlling an un-
known stochastic linear dynamical system subject to an infinite-
horizon discounted quadratic cost. Existing approaches for
handling the corresponding robust optimal control problem
resort to either conservative uncertainty sets or various ap-
proximations schemes, and to our best knowledge, the current
literature lacks an exact, yet tractable, solution. We propose
a class of novel uncertainty sets for the system matrices of
the linear system. We show that the resulting robust linear
quadratic regulator problem enjoys a closed-form solution
described through a generalized algebraic Riccati equation
arising from dynamic game theory.

I. INTRODUCTION

A broad variety of problems from engineering, machine
learning, and operations research involve optimizing the
behaviour of a dynamical system in the face of inherent
uncertainties in the system model used for design and
decision-making. A vast literature going back several decades
has studied various aspects of this robust control problem,
including substantial work on system identification; adaptive,
robust, and optimal control, e.g., see [1]–[3].

In this work we consider the discrete-time Linear
Quadratic Regulator (LQR) problem under parametric uncer-
tainties. Ever since the LQR problem originated, robustness
was questioned. It is known that the discrete-time LQR can
suffer from the lack of a stability margin [4], or if any,
it is typically a noticeably worse margin in comparison
with the continuous-time counterpart [5]. Moreover, our
understanding of the corresponding perturbation theory is
limited [6], [7]. The inherent presence of uncertainties in
practice indeed reinforces the need to address these issues.
A classical µ-synthesis approach is generally intractable [8],
[9] while a tractable LMI approach like proposed in [10]
may be conservative. This work investigates to what extend
dynamic game theory can be a middle-ground.

A. Related Work

This paper is centered around quantifying the robustness
resulting from a dynamic game with quadratic cost and linear
dynamics. Early accounts of this viewpoint can be found
on for example page 90 of the monograph by Whittle [11].
There, the remark is made that extremizing a risk-sensitive
multi-stage optimal control cost function can be interpreted
as another, yet now constrained, optimal control problem.
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There is a large body of work in this direction.
The celebrated paper [12] provides necessary and suffi-
cient conditions for the continuous-time system ẋ(t) =
(A + ∆A(t))x(t) + (B + ∆B(t))u(t), (∆A ∆B) =
DF (t)(E1 E2), ‖F (t)‖ ≤ 1 to be stabilizable. This
result was later generalized to the discrete-time case in [13].
Although these results are more than 20 years old, describing
parametric uncertainties in the pair (A,B) via some matrix-
norm-balls is still the prevalent method, however currently
driven by measure concentration results, e.g., see [14], [15].
In the stochastic case, distributional uncertainties in the form
of relative entropy constraints are considered [16], [17].

Although these problems are well understood, the catch
within this game theoretic framework is that, the uncertainty
set typically depends on the extremizing parameters. There-
fore, it is not clear, a priori, over which set of models
the robust control problem is solved, this is effectively
only known a posteriori. Moreover, most results do not
consider the full uncertainty set their optimization problem
can handle, but rather focus on some “inscribed ball”, see
[17, ch 10] on how to fit an ellipsoid to data. Motivated by
renewed interest in tractable reformulations of (Robust) LQR
problems (cf. [18]–[23]), we investigate which lessons can
be drawn from the readily available dynamic game theory.

B. Contribution and Outline

This work focuses on a novel formulation and solution of
a robust LQR problem. Our contributions are as follows:

(i) We propose a novel family of uncertainty sets for the
system matrices, and show that the worst-case cost over
these sets can be solved efficiently (Proposition III.6).

(ii) Given the proposed uncertainty sets, we develop an ex-
act, up to an algebraic Riccati equation, solution to the
corresponding Robust LQR problem (Theorem III.7).

The article is structured as follows. In Section II, we
formally introduce several key definitions along with the
robust optimal control problem that will be addressed. The
new uncertainty set and the corresponding main results are
presented in Section III, which are interpreted from a game
theoretic point of view in Section IV. In Section V, we
illustrate the presented results through a numerical example.

Due to the lack of space, we refer the interested readers to
an extended version of this work [24]. This version contains
the technical proofs along with new results and discussions,
including an extension to uncertain input matrices and further
structural properties of our uncertainty set and worst-case
models.



Notation: We use standard notation, but to be clear. Let
R≥0 denote the set of non-negative real numbers, whereas
In is the identity element of Rn×n. Let Sn+ be the cone
of symmetric positive semi-definite matrices on which the
ordering is denoted by A � B. The largest singular-value
of a matrix A equals ‖A‖2. Let Tr(·) be the trace operator,
then the inner-product between A ∈ Rm×n, B ∈ Rm×n is
defined as 〈A,B〉 = Tr(A>B) such that 〈A,A〉 = ‖A‖2F
for ‖ · ‖F the Frobenius-norm. Similarly, ‖X‖2F,Q is used
to denote Tr(X>QX) for Q � 0. Furthermore, when A is
said to be exponentially stable its spectrum is fully contained
in the open unit disk. The expectation operator is given by
E[·] and X ∼ P(µ,Σ) is a random variable with mean
µ and covariance Σ for a distribution P . Optimality is
indicated with a ?, so x? is for example the minimizer of a
function f(x) with f? = f(x?). Also, in the context of an
optimization program, s.t. stands for subject to.

II. PRELIMINARIES

In this section the problem at hand is introduced.

A. Robust LQR problem

Given the matrices Q ∈ Sn+, R ∈ Sm++, discount factor
α ∈ (0, 1) and Â ∈ Rn×n, B ∈ Rn×m, Σ0,Σv ∈ Sn++,
and {vk}k∈N being a white noise sequence of independent
random variables with zero mean and a time-invariant covari-
ance matrix Σv , i.e., E[vi] = 0 and E[viv

>
j ] = δijΣv for all

i, j ∈ N. Then we seek an optimal policy π? = {µ?0, µ?1, . . . }
that solves the discounted Robust Linear-Quadratic Regula-
tor (RLQR) problem over the uncertainty set �:

inf
{µk}∞k=0

sup
∆A

E
x0,v

[ ∞∑
k=0

αk
(
x>k Qxk + u>k Ruk

)]
,

s.t. xk+1 = (Â+ ∆A)xk +Buk + vk,

vk
i.i.d.∼ P(0,Σv), x0 ∼ P(0,Σ0),

uk = µk(xk), ∆A ∈ �.

(1)

In other words, we consider the LQR problem where the
system matrix A is not precisely known, but known to be
described by A = Â + ∆A. Here our prior estimate of A
is denoted by Â, whereas ∆A ∈ � is the uncertainty. A
particular example of such a setting naturally emerges in
statistics or identification problems where Â is the current
estimate of A and � contains ∆A with high probability.

See [24] for an extension to the case where also B is
partially unknown.

Assumption II.1 (Linear time-invariant policy): In problem
(1), we restrict the class of control policies µk to linear time-
invariant (LTI) controllers µk(x) = Kx where K ∈ Rm×n.

Instead of writing the full program (1) over again, intro-
duce a compact notation:

Definition II.2 (Discounted LQ cost): Consider the dynami-
cal system xk+1 = Axk+vk where the noise process and the
intial condition follow vk

i.i.d.∼ P(0,Σv) and x0 ∼ P(0,Σ0).

Then we define the linear quadratic (LQ) cost function
J : Rn×n × Sn+ → R≥0 ∪ {∞} by

J (A,Q) := E
x0,v

[ ∞∑
k=0

αkx>k Qxk

]
.

Since we consider a discounted LQ cost, it is helpful to
also introduce a respective notion of stability.

Definition II.3 (
√
α-stability): Let α ∈ (0, 1], then the

matrix A is
√
α-stable when its spectrum is fully contained in

the open disk with radius α−1/2, i.e.,
√
αA is exponentially

stable.

One can observe that the classical exponential stability
notion in system theory is a sufficient condition, and not
necessary, for the

√
α-stability of Definition II.3.

The main objective of this study is to introduce an un-
certainty set � that facilitates an exact and tractable robust
LQR formulation which is meaningful to study. To this end,
we first proceed with a brief discussion regarding a desirable
property of such an uncertainty set �.

B. Convexity in Robust Linear Control

As the next example shows Assumption II.1 restricts
possible �. There is no time-invariant K which can stabilize
all stabilizable pairs (A,B):

Example II.4 (Lack of universal stabilizing feedback law):
Consider for some finite scalar c and d ∈ (−1, 1) the
matrices

A1 =

(
1 c
0 d

)
, A2 =

(
−1 c
0 d

)
, B =

(
1
0

)
.

The pairs (A1, B) and (A2, B) are stabilizable. However
if we let the controller be of the form K =

(
K1 K2

)
then (A1, B) needs K1 ∈ (−2, 0) while (A2, B) needs
K1 ∈ (0, 2) to make the closed-loop matrix exponentially
stable. Since (−2, 0)∩ (0, 2) = {∅} there is no K which can
exponentially stabilize both systems.

Example II.4 can be interpreted in the spirit of switching
control, i.e., once (A1, B) switches to system (A2, B) your
linear control law should switch as well. As indicated by
the discrete-time version of Lemma 3.1 from [25], given a
compact subset K ⊂ Rn×n×Rn×m of the set of stabilizable
pairs (A,B) one can indeed introduce a finite covering where
all the elements of each segment can be stabilized via a
common feedback gain, e.g., (A1, B) and (A2, B) are never
members of the same segment while for example ‖A1‖2 =
‖A2‖2. This simple observation indicates that the existence
of a stabilizing solution to (1) is not immediately obvious,
even for simple norm-balls.

One may wonder how these individual segments look like,
and in particular with the desire of a tractable algorithm in
mind, whether a set of stabilizable pairs with a common
stabilizing feedback is necessarily convex in Rn×n×Rn×m.
The following example provides a negative answer to this
question.



Example II.5 (Non-convex segment): Consider for a = 2
and d = 0.5 the matrices

A1 =

d 0 a
0 d 0
0 0 d

 , A2 = A>1 , B =

0
1
0


Then (A1, B) and (A2, B) are both stabilizable, perhaps by
K = d2B>, while for A = 0.5A1 + 0.5A2 the pair (A,B)
is not stabilizable. Moreover, since one can find a path from
(A1, B) to (A2, B) which can be stabilized by K, there does
exist some non-convex segment containing both of the pairs.

These quick examples indicate that convex uncertainty sets
for (A,B) in Rn×n ×Rn×m, which currently dominate the
field, can be a restrictive point of view indeed and may be
potentially conservative. Now, note that we do not claim that
non-convexity is desirable, but merely observe that it should
not be ruled out.

III. MAIN RESULTS
The main objective of this section is to provide a closed-

form solution to the RLQR problem (3) and study its
implications.

A. Introduction of a new uncertainty set
Definition III.1 (Uncertainty set): Given a tuple
(Â,D,Σ0,Σv, α) and some γ ∈ R≥0, let W0,v :=

Σ0 + α(1 − α)−1Σv and define a set of models around Â
by the set:

Aγ(Â) :=

A ∈ Rn×n :

A = Â+D∆A,

Σx = αAΣxA
> +W0,v,

Σx � 0,〈
∆>A∆A,Σx

〉
≤ γ

 .

(2)

For notational convenience, we shall refer to the collection
of ∆A by �γ(Â). Using this notation, we therefore have
the following simple relation between these sets: Aγ(Â) =

Â+D�γ(Â)1.

Remark III.2 (Absence of translation invariance): Let
Br(x) be an Euclidean ball with radius r and center x. Then
one can think of Aγ(Â) as a ball with radius γ and center
Â. However, in contrast to an Euclidean ball, our set is not
translation invariant and depends on the center Â. Moreover,
since W0,v � 0, for ∆A to be in �γ(Â) is the same as being
part of the set {∆A ∈ Rd×n : ‖∆>A‖2F,Σx ≤ γ} for Σx as in
(2). This further explains why γ is referred to as a “radius”.

Remark III.3 (Structural information): The matrix D in
Definition III.1 may be used to incorporate a form of prior
structural information into the uncertainty set. Without any
prior structural information, one should choose D = In.

Before addressing (1) under (2), we provide, inspired by
Lemma 2 from [22], some insights about the set Aγ , which
are especially interesting from an optimization point of view

1With slight abuse of notation, by + between two sets we mean the
Minkowski sum: A+B = {a+ b : a ∈ A, b ∈ B}.

Proposition III.4: The set Aγ(Â) as defined in Defini-
tion III.1 has the following properties:

(i) For n ≥ 3 there are sets Aγ(Â) which are non-convex.

(ii) For γ > 0, the set Aγ(Â) is semi-algebraic.

Further extending the tools from [22] to the game theoretic
regime, allows for showing that the set is path-connected.
The fact that our uncertainty set is semi-algebraic and does
not rule out the lack of convexity is nice from a control
theoretic point of view as well. See for example [26], an
Euclidean ball of (A,B) ∈ Rn×n × Rn×m intersected with
the set of controllable pairs (A,B) is semi-algebraic. In
the following we illustrate the general non-convexity of the
proposed uncertainty sets through an example.

Example III.5 (Non-convexity of �γ): We consider the case
where the uncertainty set Aγ ⊂ R3×3 from Definition III.1
is constructed using the parameters α = 0.95, D = Qc` =
Σ0 = I3, and Σv = 0.01I3. Here we will consider several
“levels sets” of �γ . Since the set �γ is essentially a 9-
dimensional object, for the sake of illustration we restrict
our attention to a 2-dimensional subset. For this purpose, we
consider the closed loop matrix Ac`, and especially all ∆A,
to be parametrized by

Ac` =

0.25 1.25 −0.84
0 0.25 0

0.70 1.25 0.25


︸ ︷︷ ︸

Â+BK

+

 0 0 ∆A13

0 0 0
∆A31 0 0


︸ ︷︷ ︸

∆A

,

where ∆A13 = 4.98θ1 − 0.25θ2, ∆A31 = 0.45θ2 −
1.08θ1, and the parameters (θ1, θ2) belong to the interval
[−1, 1]2. This choice of (θ1, θ2) over (∆A13,∆A31) is purely
driven by visualization purposes. Figure 1a depicts the 2-
dimensional slice of �γ by means of (θ1, θ2) for the levels:
γ ∈

{
2−4, 21, 24, 214

}
. Interestingly enough, it is non-

convex for large values of γ. Figure 1b also illustrates the
LQ cost J (Ac`, Qc`) from Definition II.2.

At last, using the shorthand notation, the problem (1) over
(2) is written as

inf
K∈Rn×m

sup
Ac`∈Aγ(Â+BK)

J (Ac`, Q+K>RK) . (3)

It is worth noting the dependence on K in the inner maxi-
mization step. A solution to (3) is given by

(
K?(γ), A?c`(γ)

)
.

B. Solving a Robust LQR Problem

In the first step, we tackle the worst-case LQ problem over
Aγ , being the inner maximization of the RLQR problem (3).
This problem is defined as

sup
Ac`∈Aγ(Âcl)

J (Ac`, Qc`), (4)

for some given controller K
√
α-stabilizing Âc` := Â+BK

and Qc` := Q+K>RK being the closed-loop cost matrix.
Denote the solution to (4) by by A?c`(γ) := Âc` +D∆?

A(γ).



(a) Uncertainty set �γ as in Definition III.1. (b) LQ cost J as in Definition II.2.

Fig. 1: Given the parameters from Example III.5 we show the uncertainty sets and LQ function parametrized by (θ1, θ2) ∈
[−1, 1]2 for different levels γ ∈

{
2−4, 21, 24, 214

}
from darker to lighter gray.

Proposition III.6 (Worst-case LQ cost): Consider prob-
lem (4) with nominal closed-loop model Âc`, structural
matrix D, some α ∈ (0, 1), initial data Σ0,Σv ∈ Sn++, and
closed-loop cost matrix Qc` ∈ Sn+. Given some δ ∈ R≥0, let
us assume that (δ−1Id − αD>SD) � 0 is satisfied for the
(minimal) positive semi-definite solution S to the algebraic
equation

S =Qc` + αÂ>cl

(
S + αSD(δ−1Id − αD>SD)−1D>S

)
Âcl.

Then define

∆?
A(δ) = (δ−1Id − αD>SD)−1D>SÂcl.

Further, define Σ̃x as the positive-definite solution to the
Lyapunov equation

Σ̃x = α
(
Âc` +D∆?

A(δ)
)
Σ̃x
(
Âc` +D∆?

A(δ)
)>

+W0,v

(5)

which in its turn defines the function

h̃(δ) =
〈(

∆?
A(δ)

)>
∆?
A(δ), Σ̃x

〉
. (6)

Then, ∆?
A(γ) = ∆?

A(δ) and J ? =
〈
Σ̃x, Qc`

〉
are the

optimizer (worst-case uncertainty) and the optimal value of
the problem (4) with the parameter γ = h̃(δ).

Now we are at the stage to address (3). This is not completely
new, see for example [16], [27], where in the former2, the
pair (γ, δ) is interpreted via multiplier theory. We provide, in
line with Definition III.1, a slightly different system- instead
of signal- theoretic interpretation.

Theorem III.7 (Optimal Robust LQ regulator): Consider
the RLQR problem (3) with the nominal

√
α-stabilizable

model (Â, B), the structural matrix D, α ∈ (0, 1), the cost
matrices Q ∈ Sn+, R ∈ Sm++ and the covariance matrices
Σv,Σ0 ∈ Sn++. Given the parameter δ ∈ R≥0, assume that
the algebraic equation

P = Q+ αÂ>P
(
In + α(BR−1B> − δDD>)P

)−1
Â (7)

in P admits a minimal3 positive semi-definite solution
2Specifically, see sec. 2.4 and ch.7-8 for a discussion.
3See chapter 3 from [28] for the definition and more information.

denoted P (δ) and define Λ(δ) correspondingly via Λ :=
In + α(BR−1B> − δDD>P . Furthermore, define

∆?
A(δ) = αδD>P (δ)

(
Λ(δ)

)−1
Â (8)

and let Â?c`(γ) := Â+D∆?
A(δ)+BK?(γ). Next, consider the

expressions for Σ̃x and h̃(δ) as in (5) and (6) respectively,
which are now functions of K as well, to emphasize the
difference, the tildes are dropped, i.e., define:

Σx = αÂ?c`(γ)Σx
(
Â?c`(γ)

)>
+W0,v (9)

h(δ) =
〈(

∆?
A(δ)

)>
∆?
A(δ),Σx

〉
. (10)

Then,
(i) the controller uk = K?(γ)xk defined by

K?(γ) = −αR−1B>P (δ)
(
Λ(δ)

)−1
Â (11)

is (the minimizing part of) the solution to the RLQR
problem for γ = h(δ).

(ii) Furthermore, the maximizing solution is Â?c`(γ), dif-
ferently put, the worst-case4 system matrix is given by
A?(γ) = Â+D∆?

A(δ).
(iii) At last, the map h(δ) is analytic and non-decreasing

over some interval [0, δ) ⊂ R≥0 for δ <∞.

See section IV for a game theoretic interpretation of this
“breakdown point” δ.

It is also important to remark that although problem (1) is
well-defined for all γ ∈ R≥0, Theorem III.7 does not simply
hold for any γ ∈ R≥0 but rather for some range [0, γ) ⊆ R≥0

where h(δ) = γ. See Section 5.2.2 from [24] for a discussion
on the properties of this map h, we do not necessarily have
limδ↑δ h(δ) = ∞. This explains the implicit formulation of
the Theorem.

Additionally, despite this work being about A, we can
make a remark regarding B. As shown in [13], [29], when
det(Â) 6= 0 then, theoretically, the extension to case with a
partially known B is available by simply extending the state

4In the appendix of [24] we affirmatively answer the question if this
worst-case model is actually a least-favourable model.



space and applying the aforementioned theory. See [24] for
a further discussion and more ideas.

Finally, recall that Theorem III.7 presents us with an
explicit expression for the worst-case model. From there
we can infer further structural properties which is discussed
at length in [24]. These observations are interesting since
game theoretic formulations play a prominent role, either
explicitly or implicitly, in many control-related fields. Also,
it is expected that these results are quite general since they
hinge on the symmetries in the cost. So, for the better or
worse, even the most basic game theoretic robust control for-
mulation displays a rich structure. It is the authors hope that
this inspires further investigations in tractable robust control
algorithms while alleviating predominant conservatism.

IV. GAME THEORETIC INTERPRETATION OF
ROBUSTNESS

In this section we sketch the proof of the main results
via a brief discussion on the connection of the original
problem to dynamic game theory setting. We note that we
are not the first to spot this link between game- and control
theory, see for example [28] and references therein. Given
the parameters Q ∈ Sn+, R ∈ Sm++, and δ ∈ [0, δ) ⊆ R≥0,
we define the function g : Rn × Rm × Rd → R by

g(x, u, w) =
(
x>Qx+ u>Ru− δ−1w>w

)
and consider for some α ∈ (0, 1) the stochastic (discounted)
two-player zero-sum dynamic game defined as:

inf
{µk}∞k=0

sup
{νk}∞k=0

E
x0,v

[ ∞∑
k=0

αkg(xk, uk, wk)

]
,

s.t. xk+1 = Axk +Buk +Dwk + vk,

vk
i.i.d.∼ P(0,Σv), x0 ∼ P(0,Σ0),

uk = µk(xk), wk = νk(xk).

(12)

Here, the parameter δ penalizes the input of the ν-player,
whose objective it is to destabilize the system, see [28] for
conditions under which (12) can be solved. Note that this
game is “diagonal” in the sense that there are no cross-
terms in the cost. This form is chosen to keep the exposition
simple, but one can consider more involved adversarial terms,
e.g., w>k Swk for some S � 0. Nevertheless, this program
heavily relies on the single parameter δ. The parameter δ is
constrained to live in the interval [0, δ), where δ is referred
to as the breakdown point, beyond this value, the ν-player
has to pay so little that the it can steer the cost to infinity5.

To see a relationship between dynamic game theory and
parametric uncertainty sets, suppose (12) admits a solution,
then consider the following. The policy of the ν-player aims
at maximizing the cost. But since the µ-player can handle
this worst-case policy, it must also be able to handle policies
of a less powerful adversary. This effectively gives rise to
a whole family of state feedback policies the µ-player can
handle.

5See ch.8 [16] for more on the relation between this breakdown point
and H∞ control.

Using the Lagrangian formulation from constrained opti-
mization, one can take the adversarial part out of the cost
and put it into the constraints, i.e., let g be redefined as
g(x, u) = x>Qx + u>Ru and add a constraint of the
form E

x0,v

[
αkw>k wk

]
≤ γ, for some γ ∈ R≥0. Then,

Theorem III.7 establishes a link between γ and δ of the form
h(δ) = γ such that we can relate their solutions as well.

V. NUMERICAL EXAMPLE

The goal of this section is to compare the actions of a
nominal control law to our robust framework. Consider the
controllable pair (Â, B) and the structural matrix D defined
as

Â =

(
1.2 0.5
0 1.2

)
, B =

(
0
1

)
, D =

(
1
1

)
.

Also define the covariance matrices Σv = 0.1I2, Σ0 = I2,
the cost matrices Q = 0.1I2, R = 10, and the discount factor
α = 0.95.

Then, set K to the nominal discounted LQ regulator6,
i.e., K = K?(0). Now, Figure 2a depicts the level sets
of �γ

(
Â + BK?(0)

)
as defined by Definition III.1 for

different levels7 γ ∈ Γ := {0.005, 0.03, 0.09, 0.4, 1}. We
further solve the worst-case model uncertainty problem (4)
via Proposition III.6. Let us recall that the mapping h̃
defined in (6) provides the relation γ = h̃(δ) between the
different values of γ. In this example, the corresponding δ
are 10−3 ·{2, 3.9, 5.5, 7.3, 7.7}. The locations of these worst-
case models are marked by a star symbol in Figure 2a.

Looking at the cost in Figure 2a anyone could guess where
these worst-case uncertainties reside. However, we have only
considered this low-dimensional example for visualization
purposes. Computationally speaking, nothing prohibits us
from doing high dimensional examples (e.g., n = 1000),
and then Proposition III.6 might help in indicating where
your system is sensitive with respect to the cost.

Finally, it is interesting to highlight what a robust con-
troller K?(γ) would do, for say, γ5 = 1. See Figure 2b for
the corresponding sets �γ=1 under both types of controller.
When compared with Figure 2a, we see that the robust
controller anticipates on where the troubles might occur.

Remark V.1 (From radius to feedback): In [24] we provide
tools to do the aforementioned computations efficiently,
which hinge on Theorem III.7.(iii). For example, let us be
given a desired “radius” γ and assume it is feasible in the
sense of Theorem III.7. Moreover, let the (local) Lipschitz
constant of the map h be some L ∈ R>0 on [0, δ) and select
β ∈ R>0 : β ≤ L−1. Then, the algorithm

δk+1 = δk + β
(
γ − h(δk)

)
, δ0 = 0,

converges to δ : h(δ) = γ at a linear rate proportional to the
estimation error of L. Now, to obtain the feedback K?(γ),
given the correct δ, one can solve the Generalized Algebraic
Riccati Equation (7) iteratively as proposed in [30].

6K = −α(R + αB>PB)−1B>PÂ for P = Q + αÂ>PÂ −
α2Â>PB(R+ αB>PB)−1B>PÂ.

7γ = 0 would yield 0 since Σx � 0.



(a) For γ ∈ Γ, the sets �γ
(
Â+BK?(0)

)
with the corresponding

worst-case path, including a projection on the cost surface.
(b) Comparison of the uncertainty hedged against for the nominal-,
K?(0), and robust controller K?(1), i.e., �γ=1 under both K.

Fig. 2: Given the parameters from section V we show the worst-case uncertainties via Proposition III.6 plus how our robust
controller anticipates on where the cost increases the sharpest.
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