On continuation and convex Lyapunov functions

Wouter Jongeneel and Roland Schwan

Abstract— Suppose that the origin is globally asymptotically
stable under a set of continuous vector fields on Euclidean space
and suppose that all those vector fields come equipped with—
possibly different—convex Lyapunov functions. We show that
this implies there is a homotopy between any two of those vector
fields such that the origin remains globally asymptotically stable
along the homotopy. Relaxing the assumption on the origin
to any compact convex set or relaxing convexity to geodesic
convexity does not alter the conclusion. Imposing the same
convexity assumptions on control Lyapunov functions leads to
a Hautus-like stabilizability test. These results ought to be of
interest in the context of learning stability certificates, policy
gradient methods and switched systems.

I. INTRODUCTION

Ever since the time of Descartes, convexity has been rec-
ognized as an important notion to study structural properties
of various mathematical objects [1]. In this work, we aim
to improve our understanding of the topology of spaces
of stable systems and show that again convexity plays an
important role. In particular, we study if vector fields on
R™ with a common global attractor can be continuously
transformed (formally, homotoped, see Section III) into each
other while preserving the attractor along the transformation.
Before making this precise, we briefly elaborate on the
relevance of this question.

One can argue that, originally, this question emerged in the
dynamical systems community. That is, well over 40 years
ago, Conley asked if dynamical systems with qualitatively
similar properties can be continuously transformed into each
other while preserving those properties along the transfor-
mation [2, p. 83]. In this work we address—in arguably the
most simple setting—those continuation (see Section IV)
questions as posed by Conley [2] and later Kvalheim [3].
Our setting is simple in the sense that we largely focus on
stability of equilibrium points instead of general attractors
and spaces.

Then, in the context of linear optimal control, policy
gradient methods have been recently shown to be a pow-
erful controller synthesis paradigm as data and constraints
can be naturally incorporated [4]. Omitting details, these
algorithms are frequently studied as being discretizations
of a continuous-time gradient flow [5]. Here, the common
assumption is that the optimal control cost is only finite under
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a stabilizing controller. Now, the hope is that, if initialized
properly, gradient flow gives rise to a curve of stabilized
closed-loop systems, moving from some initial closed-loop
system to an optimal closed-loop system. As such, it is of
great importance to understand a priori when such a curve
exists, especially when moving beyond linear systems. For
instance, when such a curve does not exist, a step size
cannot be made arbitrarily small cf. [4, Thm. 1] as one might
need to “jump”, similarly, initialization becomes of critical
importance. Indeed, the importance of understanding the
topology of the space of stable systems has been recognized
early on, e.g., see [6], [7] and motivated by these gradient-
based methods this question received renewed interest, e.g.,
see [5], [8], [9].

A more surprising motivating example can be found in the
context of switched systems. It turns out that if we have two
vector fields such that the origin is globally asymptotically
stable (GAS) (see Section I-B), then, the origin remains GAS
under arbitrary switching between those two vector fields
only if those two vector fields can be continuously trans-
formed into each other such that along the transformation
the origin remains GAS (see Proposition VI.1 below).

Motivated by the above, this work aims to illustrate how
the path-connectedness of spaces of dynamical systems can
be studied via structural properties of Lyapunov functions.
In particular, motivated by recent advances in learning [10],
[11], we focus on the ramifications of assuming (control)
Lyapunov functions—as pioneered by Artstein [12] and
Sontag [13]—to be convex. Overall, this work is also in the
spirit of the work by Arnold [14, Sec. 22], Zabczyk [15],
Reineck [16], Sepulchre & Aeyels [17], Griine, Sontag &
Wirth [18], Coron [19, Ch. 11], Byrnes [20] and Cieliebak
& Eliashberg [21, Ch. 9].

We start by introducing Lyapunov functions for the dy-
namical control systems at hand. Then, in Section II we
highlight topological properties of level sets of Lyapunov
functions. These observations are the motivation for Sec-
tion III-IV where we infer continuation results by considering
several notions of convexity. This article is concluded in
Section V.

Notation: Let r € NU{oo}, then, C"(U; V') denotes the set
of C"-smooth functions from U to V. The inner product on
R™ is denoted by (-,-) and S"! = {z € R" : ||z]|» = 1}.
The Lie derivative of a smooth function h over some open
set U C R™ with respect to a smooth vector field X over U
is denoted by Lxh and is defined pointwise by Lxh(p) :=
(Vh(p), X (p)) for any p € U [22, Prop. 12.32]. By cl(W)
we denote the closure of W and by int(W) we denote its
interior. The map « — 2z on R™ is denoted by idg~ and



tangent spaces of appropriate sets M are denoted by T}, M,
for p € M, with T M denoting the corresponding tangent
bundle [22, p. 65].

A. Dynamical control systems

We study dynamical systems over R™ of the form

d F:R" - TR"™
Salt) = Fa(t) { (1)

mo F =idgn,

where F' is C"-smooth with » > 0, 7 : TR"™ — R" defined
by (xz,v) — w(x,v) = x is the canonical projection and
for any + € R™ we have with some abuse of notation
F(z) € T,R™ Evidently, TR® ~ R™ x R", but (1) is
useful to keep in mind when comparing objects to assess
if generalizations beyond R™ are possible. Integral curves
of (1) are differentiable curves t — £(¢t) € R™ such that
£(t) = F(£(t)) for all t € dom(¢), which is non-empty
by, for instance, assuming that » > 1. However, in general,
such an assumption is too strong. We will not go into further
regularity conditions and always assume, for simplicity, that
r = 0 and that the vector field is complete, i.e., a global
flow (see below) is induced, such that we are allowed to
make global statements', for further information we point
the reader to [23], [24].

Going beyond descriptions, when aiming to prescribe the
dynamics of a system we consider (time-invariant) dynami-
cal control systems over R” x R™ of the form

d
Solt) = Fa(t),u) @

such that f(z,u) € T,R" ~ R" for all (z,u) € R"™ x
R™, where x and u denote the state and input, respectively.
Again, with some abuse of notation, we will assume that f €
CO(R™ x R™; R™), but again omit integrability discussions.
Input functions are of the form ¢ +— u(t) € R™, e.g., a state
feedback is of the form ¢ — p(xz(t)). Note, we use u instead
of u to differentiate between the function and the point. A
subclass of (2) of interest are the so-called control affine
systems of the form

Calt) = Fe0) + SO, B

where u; is the i element of v € R™ and again f,g; €

CO(R™;R™) for i = 1,...,m [25]. Based on the control
system at hand, one might say more about the space of
allowable inputs ¢ — pu(t), e.g., one might consider abso-
lutely integrable (Li. ) or essentially bounded (L°.) function

loc loc

spaces [23, App. C].

'We remark that completeness is the important property here as we will
appeal to a global flow, smoothness of F' (going beyond C©), on the other
hand, is rarely exploited. The only reason to potentially keep smoothness is
that one can naturally relax completeness and make some local statements.
Without completeness, global statements can break down, consider © = z2.
However, as the emphasis of this article is on global asymptotic stability,

examples of that form are somewhat obsolete.

B. Stability

Let F' parametrize a dynamical system of the form (1).
By our standing completeness and smoothness assumptions,
F will give rise to a continuous flow? ¢ : R x R” — R",
with its evaluation denoted by ¢*(xq) := p(t, o), which is
understood to describe a solution to (1) at time ¢, starting at
time 0 from xo. A point z* € R" is an equilibrium point of
F when F(a*) =0, w.l.o.g. we set z* = 0. Then, 0 is said
to be globally asymptotically stable (GAS) (with respect to
F)if

(s-1) 0 is Lyapunov stable, that is, for any open neighbour-

hood U, > 0 there is an open set Us C U, such that
a solution (with respect to F') starting in Us stays in
Ue;
(s-ii) 0 is globally attractive, that is, lim;_, o @' (29) = 0
for all o € R™.
We will not further digress into solutions and stability and
refer to [23]. In general it is not straightforward to capture
if 0 is GAS or not. A fruitful tool that does allow for
conclusions of this form has been devised by Lyapunov in
the late 1800s [26]. A function V € C*°(R™;R>¢) is said
to be a (smooth, strict and proper) Lyapunov function (with
respect to F' and 0) when

(V-i) V(z) > 0 for all z € R™\ {0} and V' (0) = 0;

(V-ii) (VV(z), F(z)) < 0 for all z € R™\ {0};

(V-iii) and V is radially unbounded, that is, V(z) — +o0

for ||z|| — +oc.

Property (V-iii) implies sub-level set compactness. Now,
based on work by Massera, Kurzweil and others [27], [28],
we will exploit the celebrated theorem stating that 0 is GAS if
and only if there is a (corresponding) smooth Lyapunov func-
tion [29, Thm. 2.4]. Note, we dropped the adjective “strict
and proper” as we exclusively look at Lyapunov functions of
that form. See also that, given that V' satisfies Property (V-i),
then (VV (z), F(x)) < —V(z) implies Property (V-ii).

For further references on Lyapunov stability theory we
point the reader to [23], [29], [30].

Now, given a control system (2), when it comes to the task
of globally asymptotically stabilizing 0 (we will exclusively
focus on stabilization by means of state feedback?®), the
Lyapunov function paradigm can be adjusted. Given our
stabilization goal, we seek a function ¢ — u(xz(t)) such
that under f(z,p(z)) =: F(z) the origin is GAS. Then,
analogously to the definition of a Lyapunov function, one can
define control Lyapunov functions (CLFs), yet, Property (V-
ii) is now replaced by asking that for any z € R™ \ {0} the
following holds

uiér}%ﬂ(VV(x),f(x,u)} < 0. “4)

2Flows satisfy: (1) the identity @ = idgn; and (2) group property
@Stt = % 0t Vs, t €R.

3Considering more general input functions, e.g., of the form t
wu(t, z(t)), integral curves of the corresponding closed-loop system are
generally understood to be absolutely continuous curves § : I — R™
such that the differential relation £(¢) = F(£(t), u(t, £(¢))) =: F'(t,&(t))
holds for almost all ¢ € I, in the sense of Lebesgue. This requires rethinking
some concepts, e.g., global asymptotic stability and what a closed-loop
vector field really is.



It is not evident that a choice of input function based on (4)
can result in a continuous—Ilet alone smooth—feedback. The
next section elaborates on this problem.

C. On control Lyapunov functions

Consider a dynamical control affine system with scalar
input of the form

Salt) = Ja() + glalt)u, ©

Then, for V to be a smooth CLF for (5), we must have
that for any € R™ \ {0} there exists a u € R such
that L;V (z) + uL,V(x) < 0. However, the existence of
a smooth control-Lyapunov function is topologically strong
in the sense that it generally implies (see below) that an
asymptotically stabilizing continuous feedback exists [23,
Ch. 5]. Indeed, the controller attributed to Sontag is

a(r) +y/a(r)? + B(x)* .
- B(x) iTA@ 20

0 otherwise,

ps(x) ==

for a(z) := L;V(z) and B(z) := L,V (x), eg., see [23,
p- 249]. Although (6) appears singular, ps(x) can be shown
to be continuous under the following condition; we speak
of the small control property when for all € > 0 there is a
d > 0 such that if z € R™\ {0} satisfies ||z| < 4, then,
there is a w such that |u|| < ¢ and L;V(z) + L,V (z)u <
0 [13, p. 247]. As such, the existence of a smooth CLF is
strictly stronger than being (globally) asymptotically control-
lable?, e. g., continuous feedback can be easily obstructed for
globally controllable systems that even admit smooth CLFs®.
Hence, the small control property does not always hold and
it is well-known that CLF-based-controllers can be singular,
and ever since their inception so-called “desingularization
techniques” emerged [19, Sec. 12.5.1]. For instance, under
structural assumptions a backstepping approach to handle
CLF singularities is studied in [33] and a PDE reformulation
to avoid singularities is presented in [34].

Nevertheless, in case the dynamical control system is
affine in the input u, and u is constrained to a compact
convex set, then, the existence of a C*° CLF is equivalent to
the existence of a C” (on R™\ {0}) stabilizing feedback [12].
Indeed, the work by Sontag aimed at making the construction
of such a feedback transparent. Further relaxing regularity
of a CLF, it can be shown that the existence of a so-called
“proximal CLF” is equivalent to asymptotic controllability.
These proximal CLFs are C"-smooth with r € [0,1), e.g.,
see [35] for more on non-smooth CLFs. Better yet, it can be
shown that global asymptotic controllability implies the ex-
istence of a—possibly discontinuous—feedback [36]. Even
more, Rifford showed that when the control system is glob-
ally asymptotically controllable, a—possibly nonsmooth—

4See for example [31, Sec. 2] and references therein for more on this
notion.

SA well-known example attributed to Ledyaev & Sontag is of the form
T = ugug, £2 = uiuz, €3 = uiuz cf. [32].

semiconcave® CLF always exists. Exploiting this structure,
for control affine systems, Rifford could extend Sontag’s
formula (6) to this setting [31, Thm. 2.7] and get again an
explicit feedback.

The existence of a smooth CLF is not only topologically
strong, it implies there exists a robustly stabilizing feed-
back [32].

D. On learning-based stabilization

Neural networks are becoming increasingly popular in
the context of controller synthesis [37]-[40]. A principled
approach, however, that guarantees some form of stability is
largely lacking. Progress has been made when it comes to
handling side-information [41], obtaining statistical stability
guarantees [42], in the context of input-state stability [43],
in the context of input-output stability by exploiting the
Hamilton-Jacobi inequality [44], by exploiting contraction
theory [45] and by exploiting Koopman operator theory [46],
to name a few. As these methods are data-driven, errors
inevitably slip in and great care must be taken when one aims
to mimic CLF-based controllers, i.e., if LgV(x) =0 =
L;V(x) < 0 holds for the estimated system, does it hold for
the real system and what happens if it does not? In particular,
recall (6). Moreover, in this setting the underlying dynamical
control system is frequently unknown and a function class
for V needs to be chosen a priori, what does this choice
imply? These questions inspired this work.

We also point out that these methods continue a long
history of research on computational methods for Lyapunov
functions, e.g., see [47] for a review.

II. TOPOLOGICAL PERSPECTIVE ON LEVEL SETS AND
SINGULARITIES

We start by detailing (recalling) how level sets of smooth
Lyapunov functions, with respect to points, look like topo-
logically. This result has some ramifications and provides for
motivation in the next section. For simplicity, we momentar-
ily focus on (5).

In Section I-D we discussed why one might be in-
terested in studying terms of the form L,V (z)™' =
(VV(z),9(z))~" ¢f (6). In this section we show that for
practical purposes, the properties of V' frequently obstruct
this term to be well-behaved. Indeed, singularities are studied
and shown to be unavoidable when g(x) := ¢ for some
g € R™.

To start, consider a C° dynamical system of the form (1)
on R”, with n > 2, and assume that 0 € R" is globally
asymptotically stable (and hence isolated). This implies that
there is a (strict) C'°° Lyapunov function V' : R" — R>g. In
particular, this implies that V' is also a Lyapunov function
for the C*° auxiliary system

70 = -VV (). %

6A continuous function f is said to be semiconcave when there is a
C > 0 such that z — f(z) — C||z||3 is concave.



Hence, 0 € R" is also GAS under (7). By a classical topo-
logical result largely’ due to Krasnosel’skii & Zabretko [50,
Sec. 52] this directly implies that the corresponding vector
field index (with respect to 0) satisfies

indo(~VV) = (=1)" # 0.

As the vector field index is the (oriented) degree of the
map v : OU — S"~! for any open neighbourhood U of
0 containing no other equilibrium points in its closure [51,
Sec. 6], [52, Ch. 3], this can only be true if

—-VV(z)
IVV(2)]l2

is surjective. As U is arbitrary, it follows that the (normal-
ized) gradient of V' along any non-trivial level set hits any
vector in S"~1. Differently put, fix any g € S"~! then,
for any ¢ > 0 there is always a z € V7i(c) = V. C
R™ such that (VV(z),¢9) = 0. Indeed, this is why we
assumed n > 2, otherwise the claim is not true cf. [13,
p- 121]. Summarizing, we have shown the following—which
is attributed to Wilson [53] and Byrnes [20, Thm. 4.1].

v:0U 3z

Proposition I1.1 (Level sets of smooth Lyapunov functions
(Wilson, Byrnes)). Let n > 2 and fix some g € R™ \ {0}.
Then, for any level set V,, with ¢ > 0, of any C°°-smooth
Lyapunov function V : R™ — R, asserting 0 € R™ to be
GAS under some dynamical system (1), there is an © € V,
such that (VV (x),g) = 0.

Note, Proposition II.1 implicitly assumes that 0 € R"
is the only equilibrium point as we assume the origin is
globally asymptotically stable. If desired, one can adapt the
statement and work with the domain of attraction. Also note
that the discussion above detailed that the normalized vector
VV (z) will hit any vector in S*~1, our focus on (VV (z), g)
being equal to 0 at some point is purely application-driven.
Moreover, we see that the set of points that render the inner
product zero is of codimension 1.

Indeed, Proposition II.1 is itself classical as this result can
also be understood more intuitively by directly appealing
to work by Wilson. Namely, due to the work by Wilson,
and later Perelman, we know that the level sets of (strict
and proper) C* Lyapunov functions V' : R® — R
are homeomorphic to Sm=1 [53], [54]. Although we might
assume that these level sets V. and S~ ! come equipped
with a smooth structure, this does not immediately imply the
manifolds are diffeomorphic, e.g., consider Milnor’s exotic
spheres [55]. Nevertheless, one expects that the gradient of V
along V, hits any direction when seen as a vector in S" 1, as
indeed succinctly shown above. Visualizations can be found
in [56] and further comments of this nature are collected by
Byrnes in [20], in particular, the diffeomorphism question is
addressed.

The ramifications for smooth CLFs are immediate as one
observes that the argument with respect to the auxiliary
system (7) extends mutatis mutandis.

TEarlier comments can be found in [48], see also [49].

This work is motivated by renewed interest in CLFs
from the neural network community. The following example
highlights some work that arguably would benefit from
Proposition II.1.

Example IL1.2 ((Almost) Singular CLF-based controllers).
In [57, Sec. IV] the authors consider a dynamical control
system of the form & = f(x) + gu with f € C>(R?;R?),
g € R? and u € R. Their to-be-learned CLF is of the form
V(z) = or(y(z) — 7(0)) + el|z||* with v : R® — R being
an input-convex neural network and o; : R — R>g cl-
smooth locally quadratic activation functions [11, Eq. (13)]
for i = 0,...,k. Hence, V. € CY(R";Rx). Indeed, the
authors report that the learned CLF leads to large control
values (under a Sontag-type controller (6)), they do not detail
why. The above discussion provides a topological viewpoint.

One can also interpret Proposition II.1 through the lens of
feedback linearization. Consider some input-output system
> of the form

o e = ) + gu
y(t) = hla(t)

for h =V, that is, h is given by the CLF V' (with respect
to f and g). Let the desired output be yg; = 0 such that
e(t) = y(t) —ya(t) = y(t). Hence, ¢ = V. Now the standard
(relative degree 1) feedback linearizing controller for (8) is
of the form u = (L,V)~'(v — L;V) with v denoting the
new auxiliary input [25], [58]. Indeed, under the choice

v=—\(LV)2 + (L)1

one recovers Sontag’s controller (6). Now Proposition II.1
tells us that the decoupling term (L,V)~! must be singular
in any sufficiently small neighbourhood of 0, i.e., the relative
degree assumption fails to hold.

®)

Remark I1.3 (Generalizations). To go beyond input vector
fields of the form g(x) = g € R™ we look at two scenarios.
(g-i) (Dependency on x): Introduce the function class

G, :={g € COR™R") : g(z) = g1 + ga2(x),
g1 € B\ {0}, lim ga(z) = 0},

Indeed, for any g € %,, with n > 1, it follows that for
sufficiently small ¢ > 0 there is an © € V. such that
(VV(x),9(x)) = 0. The reason being that since g € %,
there are always x1, 2 € V, such that (VV (1), g(z1)) <0
while (VV (z2),g9(x2)) > 0. Then the claim follows from
standing regularity assumptions and the intermediate value
theorem.

(g-ii) (Multidimensional input): Assume that v € R™ with
1 < m < n and let the dynamical control system be of
the form & = f(x) + >_i", giu; (dependence on x can be
generalized as in (g-i)). Then, as span{gi,...,gm} # R"
there is a nonzero v € span{gi, ..., gm}+.

Exploiting the remark from above, we recover a slightly
weaker version of a well-known result c¢f. [59, Prop. 6.1.4],



better yet, one recovers (locally) a weaker version of the
highly influential obstruction to continuous asymptotic sta-
bilization of Brockett’s nonholonomic integrator e.g., see [23,
Ex. 5.9.16].

Corollary IL.4 (Obstruction for nonholonomic systems).
Assume that v € R™ with 1 < m < n and let the
dynamical control system be of the form & =Y .- g;(x)u;
with g; € 4, fori = 1,...,m, then, there is no smooth CLF
with respect to 0 € R™.

Proof. Indeed, this result follows from, for example, Brock-
ett’s condition [60]. However, from Proposition II.1 and
Remark II.3 we know there is a point 2’ € R™\ {0} such that
(VV(2'),>°i", gi(2")) = 0. This implies that LV (z') < 0
must hold for V' to be a CLF. As f = 0, this is impossible
and no smooth CLF can exist. ]

III. ON CONVEXITY

The previous section illustrated why level sets of Lya-
punov functions are topological spheres. As such, this mo-
tivates the hope that all those Lyapunov functions can
be transformed—in some sense—to the canonical Lya-
punov function V(z) = 3(z,z). Indeed, Griine, Sontag
& Wirth [18] showed that when V is a C*> Lyapunov
function corresponding to 0 being GAS, then, there is a C !
homeomorphism 7" such that V(T'(y)) = V(y) for V(y) =
1(y,y). However, it is not clear if their arguments can be
extended to construct a homotopy from —VV(y) to —y
along vector fields such that O remains GAS throughout. The
complication here is the topology of the homeomorphism-
and diffeomorphism groups used in their line of arguments.
Those spaces are not necessarily path-connected, similar to
{X € R™" : det(X) # 0} not being path-connected,
see [61, Ch. 9].

To continue, we start this study of transformations by look-
ing at convex Lyapunov functions, as this class is particularly
simple to handle. Better yet, by exploiting this structure,
it follows that any convex Lyapunov function also asserts
stability of the “canonical” inward pointing vector field on
R™ indeed, which we will denote with some abuse of notation
by the map —idg=, i.e., giving rise to £ = —x. Exactly this
observation will be formalized and further studied below.

A. Convex Lyapunov functions

Convexity in the context of Lyapunov stability theory has
been an active research area. For example, convexity in linear
optimal control [62], convexity in the dual density formula-
tion due to Rantzer [63], convexity of the set of Lyapunov
functions due to Moulay [64] and recently, component-wise
convexity of vector fields to construct Chetaev functions due
to Sassano & Astolfi [65]. We are, however, interested in
understanding convexity of Lyapunov functions themselves.
It is known that simple asymptotically stable dynamical sys-
tems do not always admit polynomial Lyapunov functions.
For instance

d (zl(t)> _ (xl(t) +x1(t)x2(t)) 9)

dt \z2(t) —x2(t)

does not admit a (global) polynomial Lyapunov func-
tion [66], but one can show that V (z) = log(1 + %) + 23 is
a Lyapunov function asserting 0 € R? is GAS. Indeed, V is
smooth, yet not convex. We will come back to this several
times below. Similar obstructions can be found for analytic
or rational Lyapunov functions [29], [67].

The (computational) assumption to look for convex Lya-
punov functions is a popular one in the learning com-
munity, e.g., propelled by [10], [11]. However, this as-
sumption evidently restricts the problem class that can be
handled. The ramifications of assuming Lyapunov func-
tions to be convex are understood in the context of linear
systems, even for linear differential inclusions [68] and
linear switched systems [69], but not completely in the C°
nonlinear setting. An exception is [70], where the authors
consider nonlinear difference inclusions of the form x4, €
conv{fi(xk),..., fo(zr)} with k € N, f; € CO(R™";R")
fi(0) = 0 for ¢ = 1,...,n and conv(-) denoting the
convex hull. Then, assuming that the maps f1, ..., f, share
a common convex Lyapunov function allows for concluding
on 0 being GAS3. Concurrently, they show that relaxing
convexity is not possible in general, that is, counterexamples
exist [70, Ex. 1].

Similarly, in our setting, for n > 1, one can construct
vector field examples © = F(x) over R" such that 0 is
globally asymptotically stable, F' is smooth, yet no smooth
convex Lyapunov function exists. To see why, for the sake
of contradiction, one can exploit that by convexity we must
have (VV(z),z) > 0 Vo € R" and due to the stability
assumption we have (VV(z), F(z)) < 0 Vo € R™\{0} such
that the function V' must satisfy (VV (z), F((x) —z) < 0 for
all z € R™\ {0}. Hence, if there is a non-zero fixed point’ of
F, we contradict the existence of such a V. See Figure 1 for
a phase portrait illustrating a dynamical system with a fixed
point obstructing the existence of a smooth, convex Lyapunov
function. As one will be able to infer from the results below,
F' cannot point (radially) outward. Indeed, it is known that
for homogeneous Lyapunov functions this can also not be
true [17, Prop. 1]. We also remark that for convex Lyapunov
functions Property (V-iii) is implied by Property (V-i) [70,
Lem. 4.1].

We will now formalize this observation. To do so, we
introduce the notion of a homotopy. The functions f,g €
CY(X;Y) are said to be homotopic when there is a contin-
uous map H : [0,1] x X — Y such that for any z € X we
have that z — H(0,z) = f(z) while z — H(1,z) = g(z).
The homotopy is said to be a straight-line homotopy when H
is simply of the form H(s,z) = (1 — s)f(x) + sg(x). Note
that homotopies only become interesting beyond X =Y =
R™, e.g., on manifolds or when requiring more structure to
be preserved along the homotopy, as is done in this article.
See [49] for more on homotopies in the context of control
theory. See also Section VI-A for more on how homotopies
allow us to discuss path-connectedness.

8This should be understood in the discrete-time sense.
9Note, here we heavily exploit the underlying vector space structure to
be able to compare z and F'(x).



Fig. 1: Example IIL.3: integral curves of a smooth dynamical
system that obstructs the existence of a smooth convex
Lyapunov function, yet, 0 is GAS. Figure made with Python.

Theorem III.1 (Convex Lyapunov functions). Let F' €
CO(R™;R™) give rise to @ = F(x) with 0 € R™ globally
asymptotically stable (GAS) under F. Then, if there is a
convex C'*° Lyapunov function asserting 0 is GAS, the vector
field F is straight-line homotopic to —idgn such that 0 is
GAS throughout the homotopy.

Proof. By assumption there is a C'™ Lyapunov function V'
such that (VV (z), F(z)) < 0 for all x € R™\ {0}. By the
convexity of V' we also know that

Viy) 2 V(z)+(VV(z),y —z), Vy,zeR"  (10)

In particular, (10) must hold for y = 0, which yields
(VV(x),—x) < —V(zx), that is, V is also a Lyapunov
function for £ = —xz. Hence, we find that O is also GAS
under sF'(z) — (1 — s)z for all s € [0,1] since for any such
s

(VV(z),sF(z) — (1 —s)z) <0 VzeR™\{0}.
Hence, H(s,z) = sF'(z) — (1 — s)x is the homotopy. [
To illustrate the homotopy resulting from Theorem III.1,
two vector fields F} and F5 on R"™ such that 0 is GAS—
asserted via possibly different smooth convex Lyapunov

functions—are homotopic through a continuous map H :
[0,1] x R™ — R™ of the form

H(s,z) = —2sz + (1 - 2s)F1(2)
) —(2—=28)x + (25 — 1) Fy(x)

s €0, %]
s € (3,1].

A variety of known topological conditions capture the exis-
tence of a (local) homotopy (in far more general settings),
but not that along the homotopy stability is preserved cf. [3].

Similar statements can be made about control Lyapunov
functions.

Corollary III.2 (Convex control Lyapunov functions). Let
f € CO(R™ x R™;R™) give rise to the control system i =
f(x,u). If there is a convex control Lyapunov function (CLF)
V € C°(R™;Rx>g) for this control system with respect to 0,
then, V' is a CLF for any control system on the straight-line
homotopy between [ and the map (x,u) — —x.

Proof. The proof is identical to that of Theorem IIL.1, yet,
now we start from V satisfying

Ve e R"\ {0} 3u e R™ : (VV (), f(x,u)) < 0.
and again exploit convexity of V' to conclude. O

As remarked above, we see from Theorem III.1 that a
necessary condition for & = F'(x) to admit a smooth, convex
Lyapunov function, asserting 0 is GAS, is that

F(z) # Xx VA € Rsqg, Vo € R™\ {0}. (11)

Differently put, if V" is a Lyapunov function for & = F'(x), it
is also a Lyapunov function for & = F(z) — Az, with A > 0.
The next example shows we can find families of dynamical
systems that do not obey Condition (11).

Example IIL3 (Necessarily nonconvex). The system as
shown in Figure 1 can be made explicit. Consider a C'*
dynamical system of the form (1) on R? as given by

i () = (4 2) (26)
+7 (exp(=Bll=(t) - pl3) — exp(=Bllpl3)) G)

where x = (11, 12) € R?, and a = —0.1, 8 = 100, v = 10
and p = (0.5,0.5) € R? correspond to Figure 1. Indeed,
it can be shown that only 0 € R? is an equilibrium point
of this dynamical system. Note, (12) can also be understood
as a stabilizable linear system under a (bounded) nonlinear
perturbation. Regarding our necessary condition for con-
vexity, we find, for instance, that v = (0.51,0.45) € R?
and \ = 1/0.0629 provide for a (numerical)'® invalidation
of (11) indeed. Regarding stability, we remark that v can be
understood as a bifurcation parameter, with 0 being GAS for
our choice of y'.

12)

Remark III.4 (A nonconvex conic structure). Let 0 € R"
be GAS under © = F(x), then 0 is also GAS under
& = 0F(x) for any 0 > 0, e.g., consider (VV(zx), F(z))
and (VV(x),0F (z)) for some Lyapunov function V with
respect to F. Hence, if F is convex, then by Theorem III.1,
all OF are straight-line homotopic to —idgn. Despite the
conic structure, convexity of the set of these vector fields

10We write “numerical” since the obstruction is not provided in closed-
form. However, our argument is constructive and as follows. Due to the
symmetry in the nonlinear part, a necessary condition for (12) to satisfy
Fo(z) = Az is that (A — a — 1)z1 = (A — a + 1)z2 holds for some
appropriate tuple (X, o, z1, z2). For instance, fix (a, A, z2) such that (A —
a — 1) # 0 and solve for z1. Denote the resulting (z1,x2) by Z. Next,
let ¢ = exp(—B||1Z — pl|3) — exp(—B|p||3), then, we can simply set
v = (Ax1 — ax1 — x2)/¢ such that F>(Z) = AZ holds. The provided
numerical values are obtained accordingly and hence provide for a valid
obstruction.

"'To be more precise, 0 is GAS for v € [0,11.2782), while for
v = 11.2782, 0 is just locally asymptotically stable, enclosed by a semi-
stable periodic orbit. Then for v > 11.2782, the semi-stable orbit bifurcates
into an unstable- and a stable orbit. The analysis is performed using
MatCont 7.4 [71]. A simulation can be found at https://wjongeneel.
nl/bifurcationF2.gif. This type of bifurcation appears in neuro-
science [72, Fig. 1.7] and goes by several names, e.g., a saddle-node
bifurcation of a limit cycle or a fold bifurcation of a cycle, see also [73,
Sec. 8.4].



(vector fields such that O is GAS) breaks down as already
the set of Hurwitz stable matrices is nonconvex, e.g.,

s<_01 12>+(1—s) (‘01 01)

becomes unstable (not all eigenvalues lie in Cypq) for s =
1

5
Similarly, from Corollary III.2 we see that the control
system & = f(x,u) admits a smooth, convex CLF only when

Ve € R"\{0}3u e R™ : f(z,u) # Az VA € Rxq. (13)

Indeed, one can replace A € R>¢ in (13) by, for example,
A E CO(Rn;Rzo) Cf [17].

Example IILS (Linear dynamical systems). Consider the
linear dynamical system & = Ax for some matrix A € R™*™,
Theorem II1.1 implies that for a convex Lyapunov function
to exist (asserting 0 is GAS) the expression sAx — (1 — s)x
cannot vanish for some s € [0,1] and x € R"\ 0.
Reformulating, we get (11), i.e., Ax = Az cannot have a
solution for some X\ > 0 and x € R™\ {0}. However, this is
precisely stating that A cannot have an unstable eigenvalue
of the form A\ € Rxq. Indeed, for globally asymptotically
stable linear systems a convex (quadratic) Lyapunov function
of the form V (z) = +(Px,z) always exists [23, Thm. 18].

Remark IIL.6 (On sufficiency). Example I11.3 showed that
for dynamical systems of the form (12) no convex Lyapunov
function can exist. Going back to (9), the provided Lyapunov
function is nonconvex. Concurrently, one can check that (11)
holds, so a convex Lyapunov function is not ruled out. We
come back to this below.

To elaborate on Example IIL.5, for controllable linear
systems, e.g., of the form ¢ = Az + Bu, one can al-
ways parameterize a quadratic Lyapunov function for the
LQ optimally controlled closed-loop system by the positive
definite solution to the corresponding Riccati equation (for
any appropriate cost) [23, Thm. 42, Ex. 8.5.4].

Example IIL.7 (Linear dynamical control systems and Hau-
tus’ test). A celebrated condition largely attributed to Hautus
(plus Belevitch and Popov) states that a linear dynamical
control system of the form & = Ax + Bu, is stabilizable
when

rank((A—)\In B)):n VA € o(A)NCrso, (14)

where o(A) denotes the spectrum of A. See for instance [74,
Ch. 3]. Now, elementary algebraic arguments show that
Hautus’ condition (14) implies that (13) holds, as it should
for linear control systems.

Using the above, one can readily verify that, for example
d fai(t)) _ x1(t)u
dt \@2(t)) — \z1(t)z2(t)u
does not admit a smooth, convex CLF. Indeed, for (15),
controllability is lost at (0, z3) € R2.

5)

Example II1.5 and Example II1.7 show that conditions (11)
and (13) are to some extent generalizations of known condi-
tions for linear systems, yet, lifted to nonlinear systems under
convexity assumptions. These conditions are, however, weak.

A stronger set of conditions one can derive from The-
orem IIL.1 is of the form: & = f(z,u) admits a smooth,
convex CLF only if & = f(x,u) — A(z)x does, for any
A € C°(R"™;R>(). We are not the first to observe something
of this form, e.g., Sepulchre & Aeyels [17, Sec. 4.1] look
at homogeneous CLFs and recover a similar condition.

We close this subsection with a comment on mere Lya-
punov stability, that is, Property (V-ii) is replaced with the
weaker notion (VV (z), F(x)) < 0. Although this notion of
stability is understood as local, under sub-level set compact-
ness, such a Lyapunov function is of use as it allows for
concluding trajectories to remain bounded.

Remark IIL.8 (Lyapunov stability). Az the time of writing,
several examples of Lyapunov stable dynamical systems sur-
faced that provably fail to admit a smooth, convex Lyapunov
function [75]. We show that our line of arguments offers
an arguably simpler means of reaching such a conclusion.
Following the same reasoning as for Theorem III.1, when
0 is Lyapunov stable under some vector field F' and comes
equipped with a C*° convex Lyapunov function V, then, we
must have that (VV (z), F(z)—Ax) < 0Vx € R, A € R>o.
We claim that the existence of a point ' € R™ \ {0} such
that F(z'); = Nl #0 fori=1,...,n for some \' € Ry
contradicts the existence of such a function V. To see this,
suppose that such a pair (x',\') exists, then we can find
A1, A2 € Ry such that 2F (2') = (A + A2)a’. In particular,
we have that F(x') — Mo’ = (=1)(F(z') — Aaz’). We can
select \y # Ao such that by construction no element of the
equation above equals 0. However, that means that when we
move A from A\ to Ag, the sign of (VV(2'), F(z') — A\z')
flips, which is a contradiction. One can employ precisely this
argument to show that for k > 1 the origin of the system

ar o) = (77)

is Lyapunov stable, yet, no smooth, convex Lyapunov function
exists to assert this cf. [75, Thm. 1].

B. On compact convex sets

We briefly show that without too much effort the results
extend from 0 € R" being GAS under some dynamical
system parametrized by F € C°(R";R") to a compact
convex set A C R™ being GAS'? under F. As A is homotopy
equivalent to a point, this is perhaps not surprising. Define
the projection operator by

II4(x) := argmin ||z — .
ala) = argmin o~y

We have the following.

2For more on the generalization of stability notions from points to sets
we point the reader to [76] for a topological treatment.



Corollary IIL9 (Convex Lyapunov functions for convex
compact sets). Let ' € CO(R™;R") give rise to & =
F(x) with a compact convex set A C R™ being globally
asymptotically stable (GAS) under F'. Then, if there is a
convex C'*° Lyapunov function asserting A is GAS, the vector
field F is straight-line homotopic to 114 — idg~ on R™ \ A
such that A is GAS throughout the homotopy.

Proof. The Lyapunov function is such that V(z) = 0 <
x € A, hence for the convexity condition V(y) > V() +
(VV(x),y—x) we pick y = I 4(x) such that for all z € R™\
A we have (VV (z),I14(x) —x) < 0. We can conclude. [

Some comments are in place, we do not need F'(A) =0,
A merely needs to be invariant'3. This is why we cannot
say anything about the homotopy on A itself. Moreover,
settings like these easily obstruct V' € C¥(R"™;R>() (real-
analyticity), not to contradict real-analytic function theory
(bump functions cannot be C*). Also, when A is not convex,
II4 is potentially set-valued, obstructing our vector field
construction and perhaps IT4 — idg~ is not the expected
“canonical” inward vector field (due to the non-scaled offset
—x). At last, we point out that although V is smooth,
this does not imply that 9A must be a smooth manifold.
For instance, consider V (z1,72) = (71 — x2)%(z1 + 22)?
(although here, V=1(0) is clearly not convex). We direct the
reader to [28] and references therein for more on Lyapunov
theory with respect to sets.

C. Geodesic convexity

To go beyond vanilla convexity, we follow [77, Ch. 3], [78,
Ch. 11] and show how the situation is hardly different in
the context of geodesic convexity. We will be brief, for
the details on geodesic convexity we point the reader to
the references above and for background information on
Riemannian geometry we suggest [79].

Let (R™,g) be a C°° Riemannian manifold for some
Riemannian metric g. One can think of g as inducing
a change of coordinates via the inner product (-,-)4, in
particular, this metric has an effect on gradients, that is, the
(Riemanian) gradient of a differentiable function f : R" —
R, with respect to g, satisfies D f(z)[v] = (grad f(z),v),
for any (z,v) € TR"™, with D f(x)[v] being the directional
derivative in the direction v € T,R™. For example, let g be
parametrized by a symmetric positive definite matrix P, that
is, (v,w), = (Pv,w) for any v,w € T,R™ and z € R,
then, grad f(z) = P~'V f(z). Indeed, for a practical appli-
cation of this in R”, we point the reader to a discussion of
Newton’s method as used in second-order optimization [80,
Sec. 9.5]. The metric g also has ramifications for “straight
lines”, a C' curve [0,1] 2 s — ~(s) is a geodesic, with
respect to g, when it is an extremal of the energy functional
E(y) := %f[O,l] (3(7),(7))gdr. This implies geodesics are
locally minimizing length and in that sense they generalize
straight lines. As this statement is local, geodesics are by

13Let ¢ be the flow corresponding to F, then A is said to be invariant
(under ) when o(R, A) = A.

no means always unique. Then, a subset U C R" is called
geodesically convex (g-convex) when for all points z,y € U
there is a unique'* geodesic 7 : [0,1] — R™ (with respect
to g) connecting = to y such that ([0,1]) C U. A function
f:U CR"™ — R, over some g-convex domain U, is said to
be geodesically convex (g-convex) when

(1=t)f(z) +tf(y) = f(y(1)) VEe[0,1]  (16)

for v : [0,1] — R™ a geodesic, with v([0,1]) C U
connecting the point = to y. Indeed, (16) generalizes the
standard C° definition of convexity. A C'!' condition is now
given by

F(Exp, (tv)) > f(z) + t(grad f(z),v)4

where v € T,R", Exp, is the (Riemannian) exponential
map at © € U C R"™ and grad f(z) is the Riemannian
gradient of f. Here, the exponential map is defined, locally,
by Exp, (v) = (1) for ~y the unique geodesic with v(0) = z
and 4(0) = v.

Similarly, for a C? condition, a function f is g-convex
when the Riemannian Hessian satisfies Hess f(x) > 0 for
all x € U C R"™. The interest in g-convex functions stems
from the fact that local minima are again global minima, as
with standard convex functions.

We are now equipped to generalize Theorem III.1.

vt € [0,1],

Theorem III.10 (Geodesically convex Lyapunov functions).
Let (R™, g) be a Riemannian manifold and let U C R™ be
open and g-convex. Let F € C°(U;R") give rise to & =
F(x) with 0 € U globally asymptotically stable (GAS) (on
U) under F. Then, if there is a g-convex C*° Lyapunov
function asserting 0 is GAS, the vector field F is straight-
line homotopic to Exp~*(0) such that 0 is GAS throughout
the homotopy.

In Theorem II1.10, Exp~*(0) should be understood as the
map being defined by x — Exp, *(0) € T,R".

Proof. By assumption, there is a C'*° Lyapunov function V'
such that (VV(z), F(x)) < 0 for all z € U \ {0}. By the
g-convexity of V' we also know that for all ¢ € [0, 1] and
(z,v) € TU we have

V(Exp,(tv)) >V (x) + t(grad V(z), v),
V(@) + HVV(2),v),

where we removed the dependency on the metric g by
identifying both inner products with the directional derivative
DV (x)[v]. We consider ¢ = 1 and pick v := Exp, ' (0). This
map is always well-defined since our geodesics are unique.
Now we proceed exactly as in the proof of Theorem III.1
and conclude. O

Indeed, we recover Theorem III.1 for the identity metric
on R™ and U = R". In particular, in that case we can define
our Riemannian exponential map as Exp_(v) = x + v for
(sufficiently small) v € T,U. Hence, the tangent vector v

14See the discussion in [78, Sec. 11.3] on various slightly different
definitions of geodesic convexity and their implications.



such that Exp_ (v) = 0 is simply —z (now seen as a tangent
vector), i.e., Exp, '(0) = —z. Recall, formally speaking,
—idg~ should be understood as = — (z,—x) € TU while
ignoring the first component of the image. With this in
mind we can again understand Exp~*(0) as the canonical
“inward” vector field, yet now on a subset of (R", g).

Generalizing to compact manifolds and so forth (beyond
contractible sets) is somewhat nonsensical as no smooth
function function with a single critical point exists on
those spaces. This restriction comes from the demand that
our geodesics are unique, obstructing nontrivial topologies.
See [77, Ch. 4] for more pointers.

A similar generalization can be achieved through the lens
of contraction analysis [81]. See in particular [82] for a
relation between g-convexity and contraction metrics.

We end this section by returning to Remark III.6, the
Lyapunov function with respect to (9) is nonconvex, yet
the dynamical system satisfies the necessary condition (11).
Indeed, the function is locally g-convex'> (under quadrant-
wise exponential geodesics, using a “log-barrier” metric
cf: [83, Ex. 4.8], thanks to the invariance properties of the
vector field). However, under such a choice of metric the
exponential map is not well-defined (the metric is singular
at 0), generalizing our framework to handle weaker regularity
conditions is left for future work.

IV. ON CONTINUATION

The existence of a mere homotopy is not immediately
informative. Often, only when the homotopy itself satisfies
certain properties, one can draw nontrivial conclusions.

In our case the homotopies as detailed in Theorem III.1,
Corollary III.2, Corollary III.9 and Theorem III.10 all pre-
serve qualitative properties of the underlying dynamical sys-
tem. More formally, this construction provides a continuation
in the sense of Conley, albeit from a different perspective.
Again, we are decidedly brief, but we point the reader to [2],
[84] for more details on Conley index theory and suggest [85]
as a reference on algebraic topology.

Recall that a dynamical system of the form (1) gives rise
to a global flow ¢ : R x R® — R". Let S C R"™ be an
isolated invariant set (with respect to ), that is,

S=Inv(M,¢) :={x e M:p(R,z) C M} Cint(M)

for some compact set M C R"™. Note that not every invariant
set is isolated, e.g. consider an equilibrium point of the
center-type. Then, a pair of compact sets (N, L) C R" x R"
is an index pair for S when
(I-i) S =Inv(cl(N\L),p)and N\ L is a neighbourhood
of S;
(I-i1) L is positively invariant in NN;
(I-iii) L is an exit set for N (a trajectory that leaves N,
must leave through L).
Now, the (homotopy) Conley index of S is the homotopy type
of the pointed (quotient) space (N/L,[L]), e.g., for N =
B", L = OB™ = S™~!, we have that N/L ~ S™ such that

STn fact, the function x — log(1 4 x2) is also semiconcave.

(N/L,[L]) is the pointed n-sphere. As this object is hard
to computationally work with, let H*(A, B;Z) denote the
k'™ singular cohomology group of A relative to B C A,
then, the homological Conley index defined as CH* (S, ¢) :=
HF(N/L,[L];Z) is of larger interest, e.g., as computational
tools are available [86]. Going back to our setting, assume
for that moment that 0 € R™ is a GAS hyperbolic fixed point
of the flow (. By hyperbolicity (local linearity), we can pick
N = eB" (a sufficiently small closed ball in R™) and L = .
Now see that

CH"(0,¢) = H"(eB" /0, [0]; Z)
~ H*(eB™; Z)

)z ifk=0
—lo

otherwise
since eB" is homotopic to a point. If 0 is not hyperbolic,
pick N to be a sub-level set of a smooth Lyapunov function
that asserts 0 is GAS, this set is compact by Property (V-
iii). Indeed, constructions like these provide for topological
obstructions [87].

Now, if some N can be chosen to be an isolating neigh-
bourhood throughout a homotopy, then the Conley index is
preserved along that homotopy [88, Thm. 1.10]. Simply put,
we speak in this case of a continuation between the dynam-
ical system at the beginning and the end of the homotopy. A
question asked by Conley concerns the opposite [2, p. 83],
to what extent do equivalent Conley indices relate to the
existence of such a continuation. See also the discussion
in [3], [89]. Indeed, we see that if there is a homotopy
through flows [0,1] © A — ) such that 0 is GAS along
the homotopy, then CH" (0, ¢o) ~ CH*(0, ¢;).

For the other direction, based on the above we have the
following. One can extend the statement to compact convex
sets or g-convexity if desired.

Corollary IV.1 (On continuation and convex Lyapunov
functions). Let 0 € R™ be GAS under two dynamical systems
of the form (1) parametrized by Fy and F, giving rise to
the flows o and @1. Assume that 0 being GAS is asserted
by—possibly different—smooth, convex Lyapunov functions
Vo and V. Then 0 (with respect to ) and 0 (with respect
to 1) are related by continuation where N can be chosen
to be of the form N = Ny N Ny (based on sublevel sets of
VE) and V1 )

A further study of this observation is the topic of future
work.

To return to similarities pointed out in the introduction,
the work by Reineck [16] and the proof of [19, Thm. 11.4]
provide the homotopy (preserving the Conley index) between
F and the (a) negative gradient flow —V V. However, how to
link—if at all— multiple dynamical systems is unclear. The
book by Cieliebak & Eliashberg does contain results in this
direction, yet under C*-nearness assumptions [21, Ch. 9],
not in general.

Then, this work alludes to convexity being a simple struc-
tural ingredient to actually link several dynamical systems



together via some canonical dynamical system.

V. CONCLUSION AND FUTURE WORK

We showed that the space of dynamical systems over R™
with 0 being GAS subject to the existence of a (generalized)
convex Lyapunov function is path-connected, see Section VI-
A. As a byproduct we derived necessary conditions for
smooth, convex (control) Lyapunov functions to exist.

There is recent work regarding paths in the space of
stable dynamical systems in the context of linear optimal
control [5], [90], but further extensions are largely lacking.
We hope this article inspires more work.

This work focused on the complete C setting with the
emphasis on R"”, future work aims at studying dynamical
control systems under weaker regularity assumptions in more
general spaces with the focus on more general attractors.

Also, this work focused on the exploitation of a g-
convex structure, however, more general structures have been
proposed and studied, e.g., a compositional structure [91].
It seems worthwhile to study more structural assumptions
along the lines of this article and previous work by Aeyels
& Sepulchre [17]. For instance, one could consider weak
convexity, e.g., see [92], and similarly, one might consider
other stability notions that provide for more structure, like
exponential stability cf. [93].

Another direction of future work is to elaborate on the
work by Griine, Sontag & Wirth [18]. In the remaining
subsections we identify more concrete directions of future
work.

A. Invexity

Let W C R™ be open. A function f € C*(W;R) is said
to be invex when there is a map n : W x W — R" such
that f(y) = f(z) + (Vf(x),n(z,y)) for any z,y € W.
Differently put, invex functions are such that critical points,
ie, x° € W such that Vf(x°) = 0, are global minima.
The map 7 is sometimes referred to as the kernel and f is
said to be invex with respect to this kernel 7. Let 2° be a
critical point of some invex function f € C'(W;R), then
f(x) > f(x°) for all x € X. Conversely, let f € C1(W;R)
be such that every critical point is a global minimizer, then
we can define n: W x W — R" by

0
(f(y) = f(=))Vf(x)
(Vf(x), V(x))

This construction shows that indeed f € C*(W;R) is invex
if and only if every critical point is a global minimizer. So
far, we have not said anything about the space of kernels,
and in that sense, 7 is unconstrained and not equipped with
any structure. Indeed, invexity has been the subject of con-
troversy [94], [95], mainly due to vacuous generalizations.
Nevertheless, continuity of 7 has been studied [96] and a
further study might allow for generalizing several arguments
from above. A similar viewpoint can be found in [97], where
the authors identify mild assumptions on 7 such that first-
order invex optimization algorithms provably converge.

if Vf(z)=0

T,y) = .
n(z,y) otherwise.
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B. Convex envelopes

Suppose 0 is GAS under a vector field F' on R”, hence,
there is a C'*° Lyapunov function V and we know that
there is a homotopy between F' and —VV(z) such that
along the homotopy 0 remains GAS. Now, construct the
convex envelope of V as conv(V)(z) := sup{g(x)
gisconvex and ¢ < V on R"}. It can be shown that
conv(V) is C! by our assumptions on V [98]. It readily
follows that, with respect to 2 = —Vconv(V)(z), conv(V)
satisfies Properties (V-i)-(V-iii), as such, 0 is GAS under
2 = —Vconv(V)(z). Therefore, a homotopy between V
and conv(V') that preserves regularity and invexity would
allow for solving the main research question of this article for
equilibrium points of vector fields on R™. A similar question
has been studied in the context of Hamilton-Jacobi equations.
Omitting details, Vese showed in 1999 that the PDE

u 1+ ||Vlu||§mln{0,)\m1n(v3u)}

ot
converges to precisely the convex envelope of u(0,x) [99].
This observation has been used in the context of homotopy
methods for nonconvex optimization [100], see also [101],
[102]. It is, however, not clear if regularity and invexity,
perhaps after adapting (17), are indeed preserved along a
solution u(t,x). We believe this is interesting future work.

a7)

VI. APPENDIX

In this appendix we present auxiliary results on topology
and switched systems.

A. Homotopies and path-connectedness

We frequently refer to spaces of stable dynamical systems
and ask if such a space is path-connected or not, however,
without making precise how to think of continuous curves in
such a space. In this appendix, we briefly highlight how to
go about this. We recall that we identify continuous vector
fields on R™ with elements of C°(R™;R™). We will address
in which sense the homotopy H : [0, 1] x R™ — R” provides
a continuous path in the space C°(R™;R™). Due to space
constraints, the discussion is brief, but for more details, we
refer the reader to [103], [104].

First, a topological space X is said to be path-connected
if for any two points xg,x; € X there exists a continuous
map v : [0,1] — X, a path, such that v(0) = zo and
v(1) = ;. Then, to reason about continuous curves in
C°(R™;R™) we need to endow it with a topology, that is,
we need to decide when two continuous maps are “close”.
Leaving R™ for the moment, given two topological spaces
X and Y, then, for K a compact subset of X and U an
open subset of YV, sets of the form O(K,U) := {f :
f e CUX;Y), f(K) C U} comprise a subbasis for the
compact-open topology on C°(X;Y). It turns out that this is
the appropriate topology, as one can show the following. Let
X,Y and Z be topological spaces with X locally compact
Hausdorff and endow C°(X;Y) with the compact-open
topology, then, the map H : Z x X — Y is continuous if
and only if the map h : Z — C°(X;Y) is continuous, where



h is defined by (h(z))(xz) = H(z,«) [104, Thm. 46.11]. In
particular, pick Z = [0,1] and X = Y = R", then, the
existence of a homotopy H : [0,1] x R™ — R" is equivalent
to a continuous path in C°(R"; R").

B. Switched systems

Suppose we have a finite set of locally Lipschitz vector
fields F = {Fy,..., F,,} on R™ such that the origin 0 € R”
is GAS under any F; € F. Now one might be interested
in understanding if 0 is still GAS under arbitrary switching
between elements of F, that is, to understand if 0 is GAS
under the switched system

Salt) = Fogy 2(0),

where t — o(t) is a piecewise constant function taking
values in {1,...,n}. It is known that for this to be true
a common C* Lyapunov function V must exist [105].
However, by the proceeding arguments we know that this
implies that any F; € F can be homotoped to —VV such
that 0 remains GAS along the homotopy. Then, by the
transitive properties of homotopies, this implies that for any
two elements of F there must be a homotopy between them
such that along the homotopy 0 remains GAS. Hence, a
somewhat counterintuitive statement is the following.

(18)

Proposition VI.1 (Necessary condition for switched sta-
bility). The origin 0 € R"™ is GAS under (18) only if all
elements of F belong to the same path-connected component
of the space of continuous vector fields on R™ for which 0
is GAS.

Hence, Proposition VI.1 further motivates studying the
topology of the space of vector fields with a common
attractor, e.g., vector fields on R™ such that 0 is GAS. It is
interesting to note that under the aforementioned conditions,
the switched system (18) can be continuously transformed
to a negative gradient flow, without sacrificing stability. To
that end, simply construct the maps H, : [0,1] x R — R”
defined by H,(s,z) = (1 —s)F,(x) —sVV (x) and observe
that for any s € [0, 1] the origin is GAS under

d

&x(t) = H,)(s,z(t)).

For more on switched systems we refer the reader to [106].
In particular, we point the reader to [106, Rem. 2.1] for
subtleties with respect to Lyapunov functions for switched
systems. In fact, from the same point of view, one observes
that a necessary condition for 0 to be GAS under (18) is that
0 is GAS under any element of the convex hull of F, e.g.,
consider (0F; + (1 — 0)F;,VV) for 6 € [0,1] [106, Cor.
2.3].
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