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Abstract

Most zeroth-order optimization algorithms mimic a first-order algorithm but re-
place the gradient of the objective function with some gradient estimator that can be
computed from a small number of function evaluations. This estimator is constructed
randomly, and its expectation matches the gradient of a smooth approximation of the
objective function whose quality improves as the underlying smoothing parameter δ is
reduced. Gradient estimators requiring a smaller number of function evaluations are
preferable from a computational point of view. While estimators based on a single
function evaluation can be obtained by use of the divergence theorem from vector cal-
culus, their variance explodes as δ tends to 0. Estimators based on multiple function
evaluations, on the other hand, suffer from numerical cancellation when δ tends to 0.
To combat both effects simultaneously, we extend the objective function to the complex
domain and construct a gradient estimator that evaluates the objective at a complex
point whose coordinates have small imaginary parts of the order δ. As this estimator
requires only one function evaluation, it is immune to cancellation. In addition, its
variance remains bounded as δ tends to 0. We prove that zeroth-order algorithms that
use our estimator offer the same theoretical convergence guarantees as the state-of-the-
art methods. Numerical experiments suggest, however, that they often converge faster
in practice.
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AMS Subject Classification (2020)—65D25 · 65G50 · 65K05 · 65Y04 · 65Y20 · 90C56.

1 Introduction

We study optimization problems of the form

minimize
x∈X

f(x), (1.1)

where f : D → R is a real analytic and thus smooth objective function defined on an open
set D ⊆ Rn, and X ⊆ D is a non-empty closed feasible set. Throughout the paper we
assume that problem (1.1) admits a global minimizer x? and that the objective function f
can only be accessed through a deterministic zeroth-order oracle, which outputs function
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evaluations at prescribed test points. Under this premise, we aim to develop optimization
algorithms that generate a (potentially randomized) sequence of iterates x1, x2, . . . , xK ∈ X
approximating x?. As they only have access to a zeroth-order oracle, these algorithms
fall under the umbrella of zeroth-order optimization, derivative-free optimization or, more
broadly, black-box optimization, see, e.g., [AH17]. As we will explain below and in contrast
to all prior work on zeroth-order optimization, we will assume that our zeroth-order oracle
also accepts complex inputs beyond D.

Zeroth-order optimization algorithms are needed when problem (1.1) cannot be addressed
with first- or higher-order methods. This is the case when there is no simple closed-form
expression for f and its partial derivatives or when evaluating the gradient of f is expensive.
In simulation-based optimization, for example, the function f can be evaluated via offline or
online simulation methods, but its gradient is commonly inaccessible. Zeroth-order optimiza-
tion algorithms can also be used for addressing minimax, bandit or reinforcement learning
problems, and they lend themselves for hyperparameter tuning in supervised learning [Spa05;
CSV09; NS17]. As they can only access function values, zeroth-order optimization methods
are inevitably somewhat crude. This simplicity is both a curse and a blessing. On the one
hand, it has a detrimental impact on the algorithms’ ability to converge to local minima,
on the other hand—and this requires further formalization [Sch22], it may enable zeroth-
order methods to escape from saddle points and thus makes them attractive for non-convex
optimization.

Zeroth-order optimization algorithms can be categorized into direct search methods,
model-based methods and random search methods [LMW19]. Direct search methods eval-
uate the objective function at a set of trial points without the goal of approximating the
gradient. A representative example of a direct search method is the popular Nelder–Mead
algorithm [NM65]. Model-based methods use zeroth-order information acquired in previ-
ous iterations to calibrate a Cr-smooth model for some r ∈ Z≥0 that approximates the
black-box function f locally around the current iterate and then construct the next iterate
via rth-order optimization methods. These approaches typically attain a higher accuracy
than the direct and random search methods, and they have the additional advantage that
function evaluations can be re-used. In general, however, they require at least O(n) function
evaluations in each iteration to construct a well-defined local model [Ber+21]. Examples
of commonly used models include polynomial models, interpolation models and regression
models [LMW19]. In contrast to model-based methods, random search methods estimate
the gradients of f at the iterates directly from finitely many function evaluations and use the
resulting estimators as surrogates for the actual gradients in a first-order algorithm. More
precisely, random search methods typically approximate f by a smooth function fδ that is
close to f for small δ and construct an unbiased estimator gδ(x) for ∇fδ(x) by sampling f
at test points in the vicinity of x [FKM04; NS17]. For many popular approximations fδ
there exists p ≥ 1 such that ‖∇fδ(x) − ∇f(x)‖ ≤ O(δp). In analogy to the model-based
methods, gδ(x) can thus be used as a surrogate for the actual gradient in a first-order algo-
rithm. A striking advantage of these random search methods over model-based methods is
that the computation of gδ(x) requires only O(1) function evaluations, yet at the expense of
weaker approximation guarantees [Liu+20; Ber+21; Sch22]. In principle, the approximation
quality of the surrogate gradients (and therefore also the convergence rate of the first-order
method at hand) can be improved by reducing the smoothing parameter δ. As gδ(x) is often
reminiscent of a difference quotient with increment δ, however, its evaluation is plagued
by numerical cancellation. This means that if δ drops below a certain threshold, innocent
round-off errors in the evaluations of f have a dramatic impact on the evaluations of gδ.
Hence, the actual numerical performance of a random search zeroth-order algorithm may
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fall significantly short of its theoretical performance [Shi+22], however, the awareness for
this phenomenon seems to be lacking.

Inspired by techniques for numerically differentiating analytic functions, we propose here
a new smoothed approximation fδ as well as a corresponding stochastic gradient estimator gδ
that can be evaluated rapidly and faithfully for arbitrarily small values of δ without suffer-
ing from cancellation effects. Integrating the new estimator into the gradient-descent-type
algorithm

xk+1 ← xk − µk · gδk(xk) (1.2)

with adaptive stepsize µk and smoothing parameter δk gives rise to new randomized zeroth-
order algorithms. The performance of such algorithms is measured by the decay rate of the
regret RK = 1

K

∑K
k=1 E [f(xk)− f(x?)] as K grows. Here, x? is a global minimizer, and

the expectation E[·] is taken with respect to the randomness introduced by the algorithm.
Note that if f is convex, then Jensen’s inequality ensures that the expected suboptimality
gap (or expected optimization error) of the averaged iterate x̄K = 1

K

∑K
k=1 xk satisfies

E [f(x̄K)− f(x?)] ≤ RK . The main goal of this paper is to understand how RK scales with
the total number K of iterations and with critical problem parameters such as the dimension
of x or Lipschitz moduli of f . Whenever possible (e.g., when f is strongly convex), we also
analyze the expected suboptimality gap E[f(xK)−f(x?)] of the last iterate xK . The scaling
behavior of RK with respect to K reflects the algorithm’s convergence rate. We will show
that algorithms of the form (1.2) equipped with the new gradient estimator offer provable
convergence rates, are numerically stable, and empirically outperform algorithms that exploit
existing smoothed approximations both in terms of accuracy and runtime.

Notation We reserve the symbol i =
√
−1 for the imaginary unit. The real and imaginary

parts of a complex number z = a + ib for a, b ∈ R are denoted by <(z) = a and =(z) = b.
In addition, Vn stands for the volume of the unit ball Bn = {x ∈ Rn : ‖x‖2 ≤ 1}, and Sn−1

stands for the surface area of the unit sphere Sn−1 = {x ∈ Rn : ‖x‖2 = 1}. The family of all
r times continuously differentiable real-valued functions on an open set D ⊆ Rn is denoted
by Cr(D), and the family of all real analytic functions on D is denoted by Cω(D).

1.1 Related work Given a deterministic zeroth-order oracle, one could address problem (1.1)
with a gradient-descent algorithm that approximates the gradient of f with a vector of
coordinate-wise finite differences [KW52; KY03; Spa05; Ber+21]. The corresponding finite-
difference methods for zeroth-order optimization are reminiscent of inexact gradient meth-
ods [d’A08; DGN14]. Maybe surprisingly, there is merit in using stochastic gradient esti-
mates even if a deterministic zeroth-order oracle is available [NS17]. The randomness not
only helps to penetrate previously unexplored parts of the feasible set but also simplifies the
convergence analysis. Specifically, if f is convex, then it is often easy to show that f(xk)
converges in expectation to the global minimum f(x?) [NS17].

Zeroth-order optimization algorithms that mimic gradient descent algorithms can be
categorized by the number of oracle calls needed for a single evaluation of the gradient
estimator. The most efficient algorithms of this kind make do with one single oracle call.
Arguably the first treatise on zeroth-order optimization with a random single-point gradient
estimator appeared in [NY83, § 9.3], where the objective function f(x) is approximated
by the smoothed function fδ(x) = V −1

n

∫
Bn f(x + δy) dy, and the degree of smoothing is

controlled by the parameter δ > 0. By leveraging the dominated convergence theorem and
the classical divergence theorem, one can then derive the following integral representation



4 1 Introduction

for the gradient of fδ(x),

∇fδ(x) = n
δ

∫
Sn−1 f(x+ δy)y σ(dy),

where σ represents the uniform distribution on the unit sphere Sn−1 (see also the proof
of Proposition 3.3). Hence, the gradient of the smoothed function fδ admits the unbiased
stochastic estimator

gδ(x) = n
δ f(x+ δy)y with y ∼ σ, (1.3)

which can be accessed with merely a single function evaluation. Stochastic gradient esti-
mators of this kind have been used as surrogate gradients in gradient descent algorithms,
for example, in the context of bandit problems [FKM04]. However, as already pointed out
in [NY83], the variance of the gradient estimator (1.3) is of the order O(n2/δ2) for small δ
even if the function f is constant. This is inconvenient because a smaller δ reduces the bias
of fδ vis-à-vis f . To improve this bias-variance trade-off, it has been proposed to subtract
from gδ(x) the control variate nδ−1f(x)y, which has a vanishing mean but is strongly corre-
lated with gδ(x) and therefore leads to a variance reduction [ADX10; NS17]. The resulting
unbiased stochastic gradient is representable as

g′δ(x) = n
δ (f(x+ δy)− f(x)) y with y ∼ σ, (1.4)

which is reminiscent of a directional derivative and can be accessed via two function evalu-
ations. Now, under mild conditions on f , the variance of g′δ(x) remains bounded as δ tends
to 0. If we aim to solve problem (1.1) to an arbitrary precision, however, the smoothing pa-
rameter δ needs to be made arbitrarily small, in which case f(x+δy) and f(x) become numer-
ically indistinguishable. Subtractive cancellation therefore makes it impossible to evaluate
estimators of the form (1.4) to an arbitrarily high precision. This phenomenon is exacerbated
when the function evaluations are noisy, which commonly happens in simulation-based op-
timization [Lia+16]. Generalized stochastic gradient estimators requiring multiple function
evaluations are discussed in [HL14], and in [Duc+15; LLZ21] various optimality properties
of zeroth-order schemes with multi-point gradient estimators are discussed.

Stochastic gradient estimators akin to (1.4) with u following a Gaussian instead of a
uniform distribution are studied in [NS17]. The corresponding stochastic gradient descent
algorithms may converge as fast as O(n/K) if f is convex and has a Lipschitz continuous
gradient, but they are typically O(n) times slower than their deterministic counterparts.
Convergence can be accelerated by leveraging central finite-difference schemes or by adding
random perturbations to the gradient estimators [Duc+15; Gas+17; Sha17]. Local conver-
gence results for nonconvex optimization problems are investigated in [GL13], and second-
order algorithms similar to (1.2), which use a Stein identity to estimate the Hessian matrix,
are envisioned in [BG22]. Lower bounds on the convergence rate of algorithm (1.2) are
established in [Aga+09; JNR12; Sha13].

Another stream of related research investigates zeroth-order optimization methods that
have only access to a stochastic zeroth-order oracle, which returns function evaluations con-
taminated by noise. The performance of these methods critically depends on the smooth-
ness properties of f . Indeed, the higher its degree of smoothness, the more terms in the
Taylor series of f can be effectively averaged out [PT90]. Improved convergence results
for zeroth-order optimization methods under convexity assumptions are derived in [BP16;
APT20; NG22]. When function evaluations are noisy, the smoothing parameter δ controls a
bias-variance tradeoff. Indeed, reducing δ reduces the bias introduced by smoothing f , while
increasing δ reduces the variance of the gradient estimator induced by the noisy oracle, which
scales as 1/δ for small δ. The variance can be further reduced by mini-batching [Ji+19].
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The impact of exact line search methods and adaptive stepsize selection schemes is discussed
in [SMG13; BCS21]. Better stepsize rules are available if f displays a latent low-dimensional
structure [Gol+20].

Generalized zeroth-order methods for optimizing functions defined on Riemannian mani-
folds are proposed in [LBM22], and algorithms that have only access to a comparison oracle,
which is less informative than a zeroth-order oracle, are investigated in [Cai+22].

For comprehensive surveys of zeroth-order optimization and derivative-free optimization
we refer to [LMW19; Liu+20]. Abstract zeroth-order methods for convex optimization are
studied in [Hu+16]. The minimax regret bounds derived in this work reveal the impor-
tance of having control over the randomness of the zeroth-order oracle. Accordingly, most
existing methods rely on the assumption that the noise distribution is light-tailed. In con-
trast, if the zeroth-order oracle is affected by adversarial noise, then optimization is easily
obstructed [SV15, Thm 3.1].

1.2 Contributions Most existing zeroth-order schemes approximate the gradient of f in a way
that makes them susceptible to numerical instability. For example, if f ∈ C1(R) is Lipschitz
continuous with Lipschitz constant L, then, in theory, the finite-difference approximation
(f(x+ δ)− f(x))/δ converges to ∂xf(x) as δ > 0 tends to zero. In practice, however, f can
only be evaluated to within machine precision, which means that f(x+ δ) and f(x) become
indistinguishable for sufficiently small δ. More precisely, as f is Lipschitz continuous, we
have |f(x + δ) − f(x)| ≤ L · |δ|, and thus cancellation errors are prone to occur when
L · |δ| approaches machine precision [Ove01, § 11]. Other gradient estimators that are based
on multiple function evaluations or that involve interpolation schemes suffer from similar
cancellation errors. Nevertheless, the convergence guarantees of the corresponding zeroth-
order methods require that the smoothing parameter δ must be driven to zero. For example,
[APT20, Thm. 3.1] establishes regret bounds under the assumption that the smoothing
parameter of a multi-point estimator scales as δk = O(1/

√
k).

The randomized gradient estimator (1.3) avoids cancellation errors because it requires
only one single function evaluation—an attractive feature that has, to the best of our knowl-
edge, gone largely unnoticed to date. However, as pointed out earlier, the variance of this
estimator diverges as δ decays, which leads to suboptimal convergence rates. In this paper
we propose a numerically stable gradient estimator that enables competitive convergence
rates and is immune to cancellation errors. More precisely, we will use complex arithmetic
to construct a one-point estimator akin to (1.3) that offers similar approximation and con-
vergence guarantees as state-of-the-art two-point estimators. Maybe surprisingly, we will see
that computing this new estimator is not significantly more expensive than evaluating (1.3).
Our results critically rely on the assumption that the objective function f is real analytic
on its domain D. Recall that f is real analytic if it locally coincides with its multivariate
Taylor series. We emphasize that real analyticity does not imply βth-order smoothness for
some β ∈ Z>0 in the sense of [BP16, § 1.1], which means that f is almost surely β− 1 times
differentiable and that the (β− 1)th-order term of its Taylor series is globally Lipschitz con-
tinuous. We will recall that f can be extended to a complex analytic function f : Ω → C
defined on some open set Ω ⊆ Cn that covers D ⊆ Rn. By slight abuse of notation, this
extension is also denoted by f . Given an oracle that evaluates f at any query point in Ω, we
will devise new zeroth-order methods that combine the superior convergence rates and low
variances of multi-point schemes reported in [Duc+15; LLZ21] with the numerical robustness
of single-point approaches.

We now use R = ‖x1 − x?‖2 to denote the distance from the initial iterate x1 to a
minimizer x? and F = f(x1) − f(x?) to denote the suboptimality of x1. Assuming that
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the objective function f is real analytic and has an L-Lipschitz continuous gradient, we
will devise zeroth-order methods that offer the following convergence guarantees. If (1.1)
represents a (constrained or unconstrained) convex optimization problem with x? ∈ int(X ),
then our algorithm’s regret decays as O(nLR2/K) with the iteration counter K. If, in
addition, f is τ -strongly convex for some τ > 0, then the expected suboptimality de-
cays at the linear rate O((1 − τ/(4nL))KLR2). If (1.1) represents a non-convex opti-
mization problem, finally, we establish local convergence to a stationary point and prove
that mink∈[K] E[‖∇f(xk)‖22] ≤ O(nLF/K). All of these convergence rates are qualitatively
equivalent to the respective rates reported in [NS17, Thm. 8], and they are sharper than
the rates provided in [APT20, § 3] in the noise-free limit. The latter rely on higher-order
smoothness properties of f but do not require f to be analytic. The key difference to all
existing methods is that we can drive the smoothing parameter to 0, e.g., as δk = δ/k,
without risking numerical instability.

As highlighted in the recent survey article [LMW19], an important open question in
zeroth-order optimization is whether single-point estimators enable equally fast convergence
rates as multi-point estimators. The desire to reap the benefits of multi-point estimators
at the computational cost of using single-point estimators has inspired multi-point estima-
tors with memory, which only require a single new function evaluation per call [Zha+22].
However, this endeavor has not yet led to algorithms that improve upon the theoretical and
empirical performance of the state-of-the-art methods in [NS17]. Filtering techniques in-
spired by ideas from extremum seeking control can be leveraged to improve the convergence
rates obtained in [Zha+22] to O(n/K2/3) [CTL22]. However, this rate is still inferior to
the ones reported in [NS17]. To our best knowledge, we propose here the first single-point
zeroth-order algorithm that enjoys the same convergence rates as the multi-point methods
in [NS17] but often outperforms these methods in experiments. The price we pay for these
benefits is the assumption that there exists a zeroth-order oracle accepting complex queries.
This assumption is restrictive as it rules out oracles that depend on performing a physical
experiment or timing a computational run etc. Nevertheless, as we will see in Section 7, the
approach can excel in the context of simulation-based optimization.

Numerical experiments built around standard test problems as well as a model predictive
control (MPC) problem corroborate our theoretical results and demonstrate the practical
efficiency of the proposed algorithms. Although cancellation effects are caused by rounding
to machine precision, which is nowadays of the order 10−16, our single-point gradient esti-
mator improves both the accuracy as well as the speed of zeroth-order algorithms already
when ε-optimal solutions with ε� 10−16 are sought.

Structure Section 2 reviews basic tools from multivariate complex analysis and introduces
the complex-step method from numerical differentiation. Section 3 then combines smoothing
techniques with complex arithmetic to construct a new single-point gradient estimator, and
Sections 4-6 analyze the favorable convergence rates of zeroth-order optimization methods
equipped with the new gradient estimator in the context of convex, strongly convex and
non-convex optimization, respectively. Section 7 reports on numerical experiments, and
Section 8 concludes.

2 Preliminaries

Before presenting our main results, we review some tools that may not usually belong to
the standard repertoire of researchers in optimization. Specifically, Section 2.1 reviews the
relevant basics of multivariate complex analysis, Section 2.2 introduces the complex-step
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approach, which uses complex arithmetic for computing highly precise and numerically stable
approximations of derivatives based on a single function evaluation, and Section 2.4 provides
a survey of inequalities that will be needed for the analysis of the algorithms proposed in
this paper.

2.1 Multivariate complex analysis For any multi-index α ∈ Zn≥0 and vector x ∈ Rn, we
use xα as a shorthand for the monomial xα1

1 · · ·xαn
n , and we denote the degree of xα by

|α| =
∑n
i=1 αi. The factorial of α is defined as α! =

∏n
i=1 αi!, and ∂αx stands for the higher-

order partial derivative ∂α1
x1
· · · ∂αn

xn
. Multi-index notation facilitates a formal definition of

real analytic functions.

Definition 2.1 (Real analytic function). The function f : D → R is real analytic on D ⊆
Rn, denoted f ∈ Cω(D), if for every x′ ∈ D there exist fα ∈ R, α ∈ Zn≥0, and an open set
U ⊆ D containing x′ such that

f(x) =
∑
α∈Zn

≥0
fα · (x− x′)α ∀x ∈ U. (2.1)

Whenever we write that a series has a finite value, we mean that it converges absolutely,
that is, it converges when the summands of the series are replaced by their absolute values.
In this case any ordering of the summands results in the same value.

One can show that any real analytic function is infinitely differentiable and that the
coefficients of its power series are given by fα = 1

α! ∂
α
x f(x′) for every α ∈ Zn≥0. This

implies that the power series is unique and coincides with the multivariate Taylor series
of f around x′ [KP02, § 2.2]. We will now recall that every real analytic function admits a
complex analytic extension.

Definition 2.2 (Complex analytic function). The function f : Ω → C is complex analytic
on Ω ⊆ Cn, denoted f ∈ H(Ω), if for every z′ ∈ Ω there exist fα ∈ C, α ∈ Zn≥0, and an
open set U ⊆ Ω containing z′ such that

f(z) =
∑
α∈Zn

≥0
fα · (z − z′)α ∀z ∈ U. (2.2)

Complex analytic functions are intimately related to holomorphic functions.

Definition 2.3 (Holomorphic function). The function f : Ω → C is holomorphic on an
open set Ω ⊆ Cn if the complex partial derivatives ∂zjf , j = 1, . . . , n, exist and are finite at
every z ∈ Ω.

The requirement that Ω be open is essential, and f may fail to be holomorphic on a
neighborhood of a point z even if it is complex differentiable at z. For example, the Cauchy-
Riemann equations reviewed below imply that f(z) = |z|3 is complex differentiable at z = 0
but fails to be complex differentiable on any neighborhood of 0. Holomorphic functions are in
fact infinitely often differentiable [Leb20, Prop. 1.1.3]. Moreover, a function is holomorphic
if and only if it is complex analytic [Leb20, Thm. 1.2.1].

It is common to identify any complex vector z ∈ Cn with two real vectors x, y ∈ Rn
through z = x+ iy. Similarly, we may identify any complex function f : Cn → C with two
real functions u : Rn → R and v : Rn → R through the relation f(x+iy) = u(x, y)+iv(x, y).
Clearly, u and v inherit the differentiability properties of f and vice versa. In particular, one
can show that if f is holomorphic, then the partial derivatives of u and v exist and satisfy
the multivariate Cauchy-Riemann equations.
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Theorem 2.4 (Multivariate Cauchy-Riemann equations). If f(x + iy) = u(x, y) + iv(x, y)
is a holomorphic function on an open set Ω ⊆ Cn, then the multivariate Cauchy-Riemann
equations

∂xj
u(x, y) = ∂yjv(x, y) and − ∂xj

v(x, y) = ∂yju(x, y) ∀j = 1, . . . , n (2.3)

hold for all x, y ∈ Rn with x+ iy ∈ Ω.

Theorem 2.4 is a standard result in complex analysis; see, e.g., [Rud87, Thm. 11.2]
or [Kra00]. Nevertheless, we provide here a short proof to keep this paper self-contained.

Proof of Theorem 2.4. We use ej to denote the jth standard basis vector in Rn. By the
definition of the complex partial derivative, for any z ∈ Ω we have

∂zjf(z) = lim
δ∈C, δ→0

1
δ (f(z + δej)− f(z)),

where the limit exists and is independent of how δ ∈ C converges to 0 because f is holomor-
phic on Ω. In particular, δ may converge to 0 along the real or the imaginary axis without af-
fecting the result. Using our conventions that z = x+iy ∈ Ω and f(x+iy) = u(x, y)+iv(x, y),
we thus have

∂xj
(u(x, y) + iv(x, y)) = lim

δ∈R, δ→0

f((x+ δej) + iy)− f(x+ iy)

δ

= lim
δ∈R, δ→0

f(x+ i(y + δej))− f(x+ iy)

iδ

= 1
i ∂yj (u(x, y) + iv(x, y))

for all x, y ∈ Rn, where the second equality holds because both limits are equal to ∂zjf(z).
Matching the real and imaginary parts of the above equations yields (2.3).

Under additional assumptions one can further show that the Cauchy-Riemann equations
imply that f is holomorphic [GM78]. However, this reverse implication will not be needed
in this paper. The following lemma based on [Kra00, § 2.3] establishes that any real analytic
function defined on an open set D ⊆ Rn admits a complex analytic extension defined on an
open set Ω ⊆ Cn that covers D.

Lemma 2.5 (Complex analytic extensions). If f ∈ Cω(D), then there exists an open set
Ω ⊆ Cn and a complex analytic function g ∈ H(Ω) such that D ⊆ Ω and f(x) = g(x) for
every x ∈ D, with D understood as embedded in Cn.

Proof. Select any x′ ∈ D. As f ∈ Cω(D), there exists a neighborhood U ⊆ D of x′

such that f admits a power series representation of the form (2.2) on U . Also, as U is
open, there exists x ∈ U with rj = |xj − x′j | > 0 for every j = 1, . . . , n. By Abel’s
lemma [Kra00, Prop. 2.3.4], the power series (2.2) extended to Cn is thus guaranteed to
converge on the open polydisc ∆(x′) = {z ∈ Cn : |zj − x′j | < rj ∀j = 1, . . . , n}. This
reasoning implies that f extends locally around x′ to a complex analytic function, which we
henceforth denote as gx′ . It remains to be shown that the local extensions corresponding
to different reference points x′ ∈ D are consistent. To this end, select any x′, x′′ ∈ D such
that the polydiscs ∆(x′) and ∆(x′′) overlap. We need to prove that gx′ and gx′′ coincide on
the open convex set ∆ = ∆(x′) ∩∆(x′′), which has a non-empty intersection with Rn. For
ease of exposition, we will equivalently prove that the holomorphic function h = gx′ − gx′′
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vanishes on ∆. We first notice that h vanishes on ∆∩Rn because gx′ and gx′′ are constructed
to coincide with f on ∆ ∩ Rn. This implies that ∂zjh = ∂xj

h = 0 on ∆ ∩ Rn, where the
first equality follows from standard arguments familiar from the proof of Theorem 2.4. As
any partial derivative of a holomorphic function is also holomorphic, one can use induction
to show that all higher-order partial derivatives of h must vanish on ∆ ∩ Rn. Hence, the
Taylor series of h around any reference point in ∆ ∩Rn vanishes, too. We have thus shown
that h = 0 on an open subset of ∆. By standard results in complex analysis, this implies
that h vanishes throughout ∆; see, e.g., [Leb20, Thm. 1.2.2]. In summary, this reasoning
confirms that all local complex analytic extensions gx′ , x

′ ∈ D, of f are consistent and thus
coincide with a complex analytic function g defined on the open set Ω = ∪x′∈D∆(x′). This
observation completes the proof.

Lemma 2.5 implies that the complex extension of a real analytic function is unique. For
example, f(x) = log(x) is real analytic on the positive real line. Representing z = reiθ ∈ C in
polar form with r ≥ 0 and θ ∈ (−π, π], the complex logarithm has countably many branches,
that is, log(z) can be defined as gk(z) = log(r) + i(θ + 2πk) for any k ∈ Z. However, only
the branch g0 corresponding to k = 0 matches f on the positive reals. We will henceforth
use the same symbol f to denote both the given real analytic function as well as its unique
complex analytic extension g. We now explicitly derive the complex analytic extensions of
a few simple univariate functions.

Example 2.6 (Complex analytic extensions). The unique complex analytic extension of
f(x) = ex is the entire function g(z) = g(x + iy) = ex(cos(y) + i sin(y)). Similarly, the
unique complex analytic extension of the even polynomial f(x) = x2p with p ∈ Z≥0 is the
entire function

g(z) = g(x+ iy) =
∑p
k=0(−1)k

(
2p
2k

)
y2kx2(p−k) + i

∑p−1
k=0(−1)k

(
2p

2k+1

)
y2k+1x2(p−k)−1.

Finally, the unique solution f(x) to the Lyapunov equation f(x) = x2f(x) + 1 parametrized
by x ∈ R is real analytic on R \ {1}. It admits the extension

g(z) = g(x+ iy) =
1− x2 + y2 − 2ixy

(1− x2 + y2)2 + 4x2y2
,

which is analytic throughout C \ {(1, 0)}.

The next example shows that the domain Ω of the complex analytic extension is not
always representable as Rn + i · (−δ̄, δ̄)n for some δ̄ > 0 even if D = Rn.

Example 2.7 (Non-trivial extension). Consider the function f(x) =
∑∞
k=1 2−k(1 + k2(x−

k)2)−1 ∈ Cω(R), which admits a unique complex analytic extension with domain Ω = C\{k+
ik−1 : k ∈ Z>0}. In addition, f can be extended to a meromorphic function on C with
countably many poles k + ik−1, k ∈ Z>0. As these poles approach R arbitrarily closely,
however, Ω cannot contain any strip of the form R× i · (−δ̄, δ̄).

To avoid technical discussions of limited practical impact, we will from now on restrict
attention to functions f ∈ Cω(D) that admit a complex analytic extension to Ω = D × i ·
(−δ̄, δ̄)n for some δ̄ > 0. One can show that such an extension always exists if f ∈ Cω(Rn)
and D is bounded or if f is entire, that is, if f has a globally convergent power series
representation. The latter condition is restrictive, however, because it rules out simple
functions such as f(x) = 1/(1+x2). Provided there is no risk of confusion, we will sometimes
call a real analytic function f ∈ Cω and its complex analytic extension simply an analytic
function.
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2.2 Complex-step approximation The finite-difference method [Vui+23, Ch. 3] is arguably
the most straightforward approach to numerical differentiation. It simply approximates
the derivative of any sufficiently smooth function f ∈ C2(R) by a difference quotient. For
example, the forward-difference method uses the approximation

∂xf(x) = 1
δ (f(x+ δ)− f(x)) +O(δ). (2.4)

The continuity of the second derivative of f allows for a precise formula for the O(δ) remain-
der term. However, as explained earlier, the finite difference method suffers from cancellation
errors when δ becomes small. The complex-step approximation proposed in [LM67; ST98]
and further refined in [MSA03; ASM15; Abr+18] leverages ideas from complex analysis to
approximate the derivative of any real analytic function f ∈ Cω(R) on the basis of one sin-
gle function evaluation only, thereby offering an elegant remedy for numerical cancellation.
Denoting by u and v as usual the real and imaginary parts of the unique complex analytic
extension of f , which exists thanks to Lemma 2.5, we observe that ∂xf(x) equals

∂xu(x, 0) = ∂yv(x, 0) = lim
δ↓0

1
δ (v(x, δ)− v(x, 0)) = lim

δ↓0
1
δ v(x, δ) = lim

δ↓0
1
δ=
(
f(x+ iδ)

)
,

where the first and the fourth equalities hold because f(x) must be a real number, which
implies that v(x, 0) = 0, while the second equality follows from the Cauchy-Riemann equa-
tions. The derivative ∂xf(x) can thus be approximated by the fraction =(f(x + iδ))/δ,
which requires merely a single function evaluation. To estimate the approximation error, we
consider the Taylor expansion

f(x+ iδ) = f(x) + ∂xf(x)iδ − 1
2∂

2
xf(x)δ2 − 1

6∂
3
xf(x)iδ3 +O(δ4) (2.5)

of the unique complex analytic extension of f , which exists thanks to Lemma 2.5. Separating
the real and imaginary parts of (2.5) then yields

f(x) = <(f(x+ iδ)) +O(δ2) and ∂xf(x) = 1
δ=
(
f(x+ iδ)

)
+O(δ2).

This reasoning shows that a single complex function evaluation f(x + iδ) is sufficient to
approximate both f(x) as well as ∂xf(x) without the risk of running into numerical in-
stability caused by cancellation effects. In addition, the respective approximation errors
scale quadratically with δ and are thus one order of magnitude smaller than the error in-
curred by (2.4). Note also that the complex-step approximation recovers the derivatives
of quadratic functions exactly irrespective of the choice of δ. For example, if f(x) = x2,
then =(f(x+ iδ))/δ = 2x = ∂xf(x). This insight suggests that the approximation is numer-
ically robust for locally quadratic functions.

The error of the complex-step approximation can be further reduced to O(δ4) by enrich-
ing it with a finite-difference method [ASM15; HS23]. However, the resulting scheme requires
multiple function evaluations and is thus again prone to cancellation errors. Unless time
is expensive, the standard complex-step approximation therefore remains preferable. The
complex-step approximation can also be generalized to handle matrix functions [AMH10] or
to approximate higher-order derivatives [LRD12]. Its ramifications for automatic differenti-
ation (AD) are discussed in [MSA03]. We return to AD below.

Being immune to cancellation effects, the complex-step approach offers approximations
of almost arbitrary precision. For example, software by the UK’s National Physical Labo-
ratory is reported to use smoothing parameters as small as δ = 10−100 [CH04, p. 44]. The
complex-step approach also emerges in various other domains. For example, it is success-
fully used in airfoil design [GWX17]. However, its potential for applications in optimization
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(a) x = −1 (b) x = 0 (c) x = 10

Figure 2.1: Comparison of the gradient estimators of Example 2.8 at different test points.

has not yet been fully exploited. Coordinate-wise complex-step approximations with noisy
function evaluations show promising performance in line search experiments [NS18] but
come without a rigorous convergence analysis. In addition, the complex-step approach is
used to approximate the gradients and Hessians in deterministic Newton algorithms for
blackbox optimization models [HS23]. The potential of leveraging complex arithmetic in
mathematical optimization is also mentioned in [SW18; BBN19]. In this paper we use the
complex-step method to construct an estimator akin to (1.3) and provide a full regret analy-
sis. Our approach is most closely related to the recent works [WS21; WZS21], which integrate
the complex-step and simultaneous perturbation stochastic approximations [Spa92] into a
gradient-descent algorithm and offer a rigorous asymptotic convergence theory. In contrast,
we will derive convergence rates for a variety of zeroth-order optimization problems.

In optimization, the ability to certify that the gradient of an objective function is suffi-
ciently small (i.e., smaller than a prescribed tolerance) is crucial to detect local optima. The
following example shows that, with the exception of the complex-step approach, standard
numerical schemes to approximate gradients fail to offer such certificates—at least when a
high precision is required.

Example 2.8 (Numerical stability of gradient estimators). To showcase the power of the
complex-step method and to expose the numerical difficulties encountered by finite-difference
methods, we approximate the derivative of f(x) = x3 at x ∈ {−1, 0, 10} via a forward-
difference (fd), central-difference (cd) and complex-step (cs) method, that is, for small values
of δ we compare ffd(x, δ) = 1

δ (f(x+ δ)− f(x)), fcd(x, δ) = 1
2δ (f(x+ δ)− f(x− δ)) and

fcs(x, δ) = 1
δ=(f(x+ iδ)). Figure 2.1 visualizes the absolute approximation errors as a

function of δ. We observe that fcd and fcs offer the same approximation quality and incur
an error of O(δ2) for all sufficiently large values of δ. However, only the complex-step
approximation reaches machine precision (≈ 10−16), whereas both finite-difference methods
deteriorate below δ ≈ 10−6 due to subtractive cancellation errors. Note that for x = 0 all
errors are equal to δ2 because f(0) = 0. As most existing zeroth-order optimization methods
use finite-difference-based gradient estimators, we conclude that there is room for numerical
improvements by leveraging complex arithmetic.

2.3 Automatic differentiation The complex-step approach is closely related to automatic
differentiation (AD) [GW08; Ell09]. AD decomposes the evaluation of f into a partially
ordered set of elementary operations and evaluates its derivative recursively using the rules
of differentiation such as the chain and product rules etc. Moreover, while the complex
step approach evaluates f at complex numbers of the form a + ib with a, b ∈ R and an
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abstract imaginary unit i satisfying i2 = −1, a version of forward-mode AD evaluates f at
dual numbers of the form a + bε with a, b ∈ R and ε 6= 0 an abstract number satisfying
ε2 = 0. The arithmetics of dual numbers imply that f(x+ ε) = f(x) + ε∂xf(x) whenever f
is real analytic, and hence one can compute both f(x) as well as ∂xf(x) in one forward
pass. Intuitively, ε should thus be interpreted as a nilpotent infinitesimal unit. While the
set of complex numbers forms a field, the set of dual numbers only forms a ring (in fact,
it forms the quotient ring R[ε]/ε2, which fails to be a field because multiplicative inverses

and hence terms such as ε2/ε and
√
ε2 are not defined). The assumptions that ε 6= 0 and

ε2 = 0 require us to give up the law of the excluded middle [Bel08] and thus also the axiom
of choice [Bau17].

The complex-step approach is computationally cheap, can approximate the derivative of
an analytic function f at extremely high accuracy levels (see Figure 2.1) and even remains
applicable when function evaluations are noisy [MW14]. AD is computationally more expen-
sive than the complex-step approach [MSA01], in settings where the latter applies, yet, AD
usually finds the exact derivative of f . Whether or not AD will succeed, however, depends
on the representation of f ; see, e.g., [Hüc+23] for a discussion of possible pitfalls. That is,
AD must be able to evaluate f at all dual numbers of the form x+ε. The following example
inspired by [Ber92] illustrates why this is restrictive. Consider the function f ∈ Cω(R)
defined through f(x) = sinc(x) = sin(x)/x for all x ∈ R \ {0} with f(0) = 1. This function
is entire and has a unique global maximum of 1 at x = 0. Nevertheless, AD breaks down at
x = 0 because 1/ε is not defined. For instance, the deep learning toolbox in MATLAB as
well as the state-of-the-art AD tools in Julia [Bez+17] (e.g., ForwardDiff.jl [RLP16],
Zygote.jl [Inn18] and Enzyme.jl [MC20]) or in Python (e.g., JAX [Bra+18]) evaluate
∂xf(0) to NaN, whereas the complex-step method provides a close approximation of the
correct value ∂xf(0) = 0. We remark that the derivative of f(x) = sinc(x) is hard-coded
in Julia.1 Hence, for AD to succeed the representation of f is critical, that is, f must be
defined as f(x) = sinc(x) instead of f(x) = sin(x)/x. A simpler, yet contrived, example
is f(x) = x/x, for which the version of AD under consideration evaluates ∂xf(0) to NaN,

too. Note also that AD fails to compute the derivative of f(x) = exp((
√
x2)2) at 0 even

though there is no division by 0. All of these problems emerge because the dual numbers
form only a ring instead of a field. As pointed out in [Ber92], these theoretical deficiencies of
AD could be remedied by working with the Levi-Civita field, whose members generalize the
dual numbers and are representable as

∑
q∈Q aqε

q with aq ∈ R for all q ∈ Q. Unfortunately,
the members of the Levi-Civita field do not admit a finite representation in general and are
therefore difficult to handle computationally.

2.4 Lipschitz inequalities In order to be able to design reasonable zeroth-order optimization
algorithms, we need to impose some regularity on the objective function f . This is usually
done by requiring f to display certain Lipschitz continuity properties. Following [Nes03],

for any integers p, k ≥ 0 with p ≤ k, we thus use Ck,pL (D) to denote the family of all k times
continuously differentiable functions on D whose pth derivative is Lipschitz continuous with
Lipschitz constant L ≥ 0. Similarly, we use Cω,pL (D) to denote the family of all analytic
functions in Cp,pL (D).

For example, if f ∈ C1,1
L1

(D), then f has a Lipschitz continuous gradient, that is,

‖∇f(x)−∇f(y)‖2 ≤ L1‖x− y‖2 ∀x, y ∈ D. (2.6)

1https://github.com/JuliaDiff/DiffRules.jl/blob/9030629bbea6b25851789af5f236f35c9009b1f6/

src/rules.jl

https://github.com/JuliaDiff/DiffRules.jl/blob/9030629bbea6b25851789af5f236f35c9009b1f6/src/rules.jl
https://github.com/JuliaDiff/DiffRules.jl/blob/9030629bbea6b25851789af5f236f35c9009b1f6/src/rules.jl
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By [NS17, Eq. (6)], this condition is equivalent to the inequality

|f(y)− f(x)− 〈∇f(x), y − x〉| ≤ 1
2L1‖x− y‖22 ∀x, y ∈ D. (2.7)

If f ∈ C1,1
L1

(D) is also convex then, the Lipschitz condition (2.6) is also equivalent to

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ 1
2L1
‖∇f(y)−∇f(x)‖22 ∀x, y ∈ D, (2.8)

see, e.g., [Nes03]. In particular, if x is a local minimizer of f with ∇f(x) = 0, then the
estimate (2.8) simplifies to 2L1 (f(y)− f(x)) ≥ ‖∇f(y)‖22 for all y ∈ D.

If f ∈ C2,2
L2

(D), then f has a Lipschitz continuous Hessian, i.e.,

‖∇2f(x)−∇2f(y)‖2 ≤ L2‖x− y‖2 ∀x, y ∈ D. (2.9)

By [Nes03, Lem. 1.2.4], this condition is equivalent to the inequality

|f(y)− f(x)−〈∇f(x), y−x〉− 1
2 〈∇

2f(x)(y−x), y−x〉| ≤ 1
6L2‖x− y‖32 ∀x, y ∈ D. (2.10)

More generally, any f ∈ Cp,pLp
(D) has a Lipschitz continuous pth derivative. Recalling

the definitions of higher-order partial derivatives and multi-indices, this requirement can be
expressed as

|
∑
|α|=p ∂

α
x f(x) · uα −

∑
|α|=p ∂

α
x f(y) · uα| ≤ Lp‖x− y‖2 ∀x, y ∈ D, u ∈ Sn−1.

It is often referred to as a (p + 1)th-order smoothness condition [BP16, § 1.1] as it implies
that any f ∈ Cp+1,p

Lp
(D) ⊆ Cp,pLp

(D) has a bounded (p+ 1)th derivative, that is,

|
∑
|α|=p+1 ∂

α
x f(x) · uα| = |∂p+1

t f(x+ tu)|t=0| ≤ Lp ∀x ∈ D, u ∈ Sn−1. (2.11)

3 A smoothed complex-step approximation

We now use ideas from [NY83; NS17] to construct a new gradient estimator, which can be
viewed as a complex-step generalization of the estimators proposed in [NY83; FKM04]. Our
construction is based on the following assumption, which we assume to hold throughout the
rest of the paper.

Assumption 3.1 (Analytic extension). The function f : D → R of problem (1.1) admits
an analytic extension to the strip D × i · (−δ̄, δ̄)n for some δ̄ ∈ (0, 1).

Recall from Lemma 2.5 that f admits an analytic extension to some open set Ω ⊆ Cn
covering D whenever f ∈ Cω(D). However, unless f is entire or D is bounded, Ω may not
contain a strip of the form envisaged in Assumption 3.1. Hence, this assumption is not
automatically satisfied for any real analytic function f ∈ Cω(D). The requirement δ̄ ∈ (0, 1)
is unrestrictive and has the convenient consequence that δp ≤ δp−1 for any δ ∈ (0, δ̄)
and p ∈ Z≥0. All subsequent results are based on a smoothed complex-step approximation fδ
of f , which is defined through

fδ(x) = V −1
n

∫
Bn <

(
f(x+ iδy)

)
dy. (3.1)

Here, the radius δ ∈ (0, δ̄) of the ball used for averaging represents a tuneable smoothing
parameter. Given prior structural knowledge about f , one could replace Bn with a different
compact set [HL14; Jon21]. We emphasize that the integral in (3.1) is well-defined when-
ever δ ∈ (0, δ̄), which ensures that f has no singularities in the integration domain. Next,
we address the approximation quality of fδ.
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Proposition 3.2 (Approximation quality of fδ). If f ∈ Cω,1L1
(D) satisfies Assumption 3.1,

then for fδ defined as in (3.1) and for any fixed x ∈ D and κ ∈ (0, 1) there exists Cκ ≥ 0
with

|fδ(x)− f(x)| ≤ 1
2L1δ

2 + Cκδ
4 ∀δ ∈ (0, κδ̄].

Proof. By the definition of fδ in (3.1), we have |fδ(x) − f(x)| ≤ V −1
n

∫
Bn |<

(
f(x + iδy)

)
−

f(x)|dy. The Taylor series of f(x+ iδy) around x then yields

< (f(x+ iδy))− f(x) =
∑∞
k=0

(−1)kδ2k

(2k)!

∑
|α|=2k ∂

α
x f(x)yα − f(x)

= − 1
2δ

2〈∇2f(x)y, y〉+ δ4R(y, δ),

where the real-valued remainder term R(y, δ) is continuous in y ∈ Bn and δ ∈ [0, δ̄). Substi-
tuting the last expression into the above estimate and using (2.11), we obtain

|fδ(x)− f(x)| ≤ V −1
n

∫
Bn

1
2δ

2L1 + δ4|R(y, δ)|dy ≤ 1
2δ

2L1 + Cκδ
4 ∀δ ∈ (0, κδ̄],

where the non-negative constant Cκ = maxy∈Bn maxδ∈[0,κδ̄] |R(y, δ)| is finite due to continu-

ity of R(y, δ) and compactness of Bn and [0, κδ̄]. Hence, the claim follows.

Note that if f is affine, then fδ = f . Note also that [0, κδ̄] is a compact subset of the
set [0, δ̄) on which R(y, δ) is continuous in δ and that R(y, δ) may be unbounded on [0, δ̄).
The following proposition provides an integral representation for the gradient of fδ. It
extends [NY83, § 9.3] and [FKM04, Lem. 1] to the realm of complex arithmetic.

Proposition 3.3 (Gradient of the smoothed complex-step function). If f ∈ Cω(D) satisfies
Assumption 3.1, then fδ defined as in (3.1) is differentiable, and we have

∇fδ(x) = n
δEy∼σ [= (f(x+ iδy)) y] ∀x ∈ D, δ ∈ (0, δ̄), (3.2)

where σ denotes the uniform distribution on Sn−1.

Proof. Any function g ∈ C1(Rn) and vector w ∈ Rn define a vector field v(y) = g(y) · w.
The divergence theorem [Lee13, Thm. 16.32] then implies that∫

Bn〈w,∇g(y)〉dy =
∫
Bn div(v(y)) dy = Sn−1

∫
Sn−1〈v(y), y〉σ(dy)

= Sn−1

∫
Sn−1 g(y)〈w, y〉σ(dy),

where the scaling factor Sn−1 accounts for the fact that the uniform distribution σ is nor-
malized on Sn−1. Note also that the outward-pointing unit normal vector of Sn−1 at any
point y ∈ Sn−1 is exactly y itself. As the above equation holds for all vectors w ∈ Rn and as
both the leftmost and rightmost expressions are linear in w, their gradients must coincide.
This reasoning implies that∫

Bn ∇g(y) dy = Sn−1

∫
Sn−1 g(y)y σ(dy). (3.3)

We are now ready to prove (3.2) by generalizing tools developed in [NY83; FKM04] to the
complex domain. Specifically, by the definition of fδ in (3.1) we have

∇fδ(x) = V −1
n

∫
Bn ∇x< (f(x+ iδy)) dy = (Vnδ)

−1
∫
Bn ∇y= (f(x+ iδy)) dy

= Sn−1(Vnδ)
−1
∫
Sn−1 = (f(x+ iδy)) y σ(dy)

= Sn−1(Vnδ)
−1Ey∼σ [= (f(x+ iδy)) y] ,
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where the interchange of the gradient and the integral in the first equality is permitted
by the dominated convergence theorem, which applies because Bn is compact and because
any continuously differentiable function on a compact set is Lipschitz continuous. The
second equality is a direct consequence of the Cauchy-Riemann equations, and the third
equality, finally, holds thanks to the generalized Archimedean principle (3.3) with pressure
function g(y) = = (f(x+ iδy)). We finally observe that the volume of the unit ball and
the surface of the unit sphere satisfy Vn =

∫
Bn dy = Sn−1

∫ r
0
rn−1dr = Sn−1/n =⇒

Sn−1/Vn = n. Thus, the claim follows.

Proposition 3.3 reveals that ∇fδ admits the unbiased single-point estimator

gδ(x) = n
δ= (f(x+ iδy)) y with y ∼ σ. (3.4)

Now we show that ∇fδ(x) approximates ∇f(x) arbitrarily well as δ drops to 0.

Proposition 3.4 (Approximation quality of ∇fδ). If f ∈ Cω,2L2
(D) satisfies Assumption 3.1,

then for fδ defined as in (3.1) and for any fixed x ∈ D and κ ∈ (0, 1) there exists Cκ ≥ 0
with

‖∇fδ(x)−∇f(x)‖2 ≤ 1
6nL2δ

2 + nCκδ
4 ∀δ ∈ (0, κδ̄]. (3.5)

Proof. If we denote as usual by In the identity matrix in Rn, then the covariance matrix of
the uniform distribution σ on the unit sphere Sn−1 can be expressed as∫

Sn−1 yy
Tσ(dy) =

∫
Sn−1 ‖y‖22 σ(dy) · 1

nIn = 1
nIn, (3.6)

where the two equalities hold because the sought covariance matrix must be isotropic and
because ‖y‖2 = 1 for all y ∈ Sn−1, respectively. Thus, the gradient of f can be represented as
∇f(x) = n

∫
Sn−1〈∇f(x), y〉y σ(dy). Together with Proposition 3.3, this yields the estimate

‖∇fδ(x)−∇f(x)‖2 = n
δ

∥∥∫
Sn−1 = (f(x+ iδy)) y − δ〈∇f(x), y〉y σ(dy)

∥∥
2

≤ n
δ

∫
Sn−1 |= (f(x+ iδy))− δ〈∇f(x), y〉| ‖y‖2 σ(dy).

By using the Taylor series representation of f(x+ iδy) around x, we find

= (f(x+ iδy))− δ〈∇f(x), y〉 =
∑∞
k=0

(−1)kδ2k+1

(2k+1)!

∑
|α|=2k+1 ∂

α
x f(x)yα − δ〈∇f(x), y〉

=
∑∞
k=1

(−1)kδ2k+1

(2k+1)!

∑
|α|=2k+1 ∂

α
x f(x)yα

= − 1
6δ

3∑
|α|=3 ∂

α
x f(x)yα + δ5R(y, δ),

where the real-valued remainder term R(y, δ) is continuous in y ∈ Bn and δ ∈ [0, δ̄). Substi-
tuting the last expression into the above and using (2.11), we obtain

‖∇fδ(x)−∇f(x)‖2 ≤nδ
∫
Sn−1

(
1
6δ

3L2 + δ5 |R(y, δ)|
)
‖y‖2 σ(dy)

≤ 1
6δ

2nL2 + nCκδ
4 ∀δ ∈ (0, κδ],

where the non-negative constant Cκ = maxy∈Sn−1 maxδ∈[0,κδ̄] |R(y, δ)| is again finite due to

the continuity of R(y, δ) and the compactness of Sn−1 and [0, κδ̄].
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Proposition 3.4 implies that the single-point estimator (3.4) incurs only errors of the
order O(δ2) on average. Equally small errors were attained in [NS17] for f ∈ C2,2

L2
by using

Gaussian smoothing and a multi-point estimator. Unfortunately, the latter is susceptible to
cancellation effects. Proposition 3.4 also implies that limδ↓0∇fδ(x) = ∇f(x). In addition,
one readily verifies that if f is quadratic (that is, if L2 = 0), then ∇fδ(x) = ∇f(x) for
all x ∈ D and δ ∈ (0, δ̄). The single-point estimator gδ(x) introduced in (3.4) is unbiased by
construction. In addition, as for the multi-point estimator proposed in [NS17], the second
moment of gδ(x) admits a convenient bound.

Corollary 3.5 (Second moment of gδ(x)). If f ∈ Cω,2L2
(D) satisfies Assumption 3.1, then

for gδ as in (3.4) and for any fixed x ∈ D and κ ∈ (0, 1) we have

Ey∼σ
[
‖gδ(x)‖22

]
≤ n2( 1

6L2δ
2 + Cκδ

4)2 + n‖∇f(x)‖22
+ 2n2

(
1
6L2δ

2 + Cκδ
4
)
‖∇f(x)‖2,

(3.7)

where Cκ ≥ 0 is the same constant as in Proposition 3.4.

Proof. Using the definition of gδ and the fact that ‖y‖2 = 1 ∀ y ∈ Sn−1, we find

Ey∼σ
[
‖gδ(x)‖22

]
= n2

δ2 Ey∼σ[(= (f(x+ iδy)))
2
]. (3.8)

By essentially the same arguments as in the proof of Proposition 3.4, we further have

|= (f(x+ iδy))| = |= (f(x+ iδy))− 〈∇f(x), δy〉+ 〈∇f(x), δy〉|
≤
∣∣ 1

6δ
3L2 + δ5Cκ

∣∣+ |〈∇f(x), δy〉| .

Squaring the above and applying the Cauchy-Schwarz inequality yields

|= (f(x+ iδy))|2 ≤
(

1
6δ

3L2 + δ5Cκ
)2

+ 〈∇f(x), δy〉2

+ 2δ
(

1
6δ

3L2 + δ5Cκ
)
‖∇f(x)‖2‖y‖2.

The claim then follows from substituting the above into (3.8) and using (3.6).

In analogy to Proposition 3.4, one readily verifies that if f is quadratic (i.e., if L2 = 0),
then the right hand side of (3.7) vanishes. Under a third-order smoothness condition, there
exist multi-point estimators that satisfy a bound akin to (3.7) [NS17, Thm. 4.3].

Unlike the smooth approximations proposed in [NS17], the smoothed complex-step ap-
proximation fδ does frequently not belong to the same function class as f . For example,
even though the Lorentzian function f(x) = 1/(1 + x2) has a Lipschitz continuous gradient
with L1 = 2, the Lipschitz modulus of its approximation fδ strictly exceeds 2 for some values
of δ close to 1 because f has two poles at i and −i. Similarly, fδ does not necessarily inherit
convexity from f .

Example 3.6 (Loss of convexity). If f ∈ Cω(R) is entire, then it has a globally convergent
power series representation with real coefficients. Consequently, f satisfies

<(f(x+ iδy)) =
∑∞
k=0(−1)k f

(2k)(x)
(2k)! (δy)2k.

In the special case when f(x) = x2, the complex-step approximation <(f(x + iδy)) = x2 −
(δy)2 inherits convexity from f regardless of the choice of δ > 0 and y ∈ R. Thus, fδ is
also convex because convexity is preserved by integration. However, if f(x) = x4, then we
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Algorithm 1 Imaginary zeroth-order optimization

1: Input: initial iterate x1 ∈ X , stepsizes {µk}k∈Z≥0
, smoothing parameters {δk}k∈Z≥0

2: for k = 1, 2, . . . ,K − 1 do
3: sample yk ∼ σ
4: set gδk(xk) = n

δk
= (f(xk + iδkyk)) yk

5: set xk+1 = ΠX (xk − µk gδk(xk))
6: end for
7: Output: last iterate xK and averaged iterate x̄K = 1

K

∑K
k=1 xk

find <(f(x + iδy)) = x4 − 6x2(δy)2 + (δy)4, which fails to be convex in x for any δ > 0
and y 6= 0. In this case, fδ remains non-convex despite the smoothing. Finally, if f is
strongly convex (e.g., if f(x) = x2 + x4), then one readily verifies that <(f(x + iδy)) is
convex in x provided that δ is sufficiently small.

If fδ inherited convexity from f , one could simply incorporate the estimator (3.4) into
the algorithms studied in [NS17, § 5], and the corresponding convergence analysis would
carry over with minor modifications. As the smoothed complex-step approximation may
destroy convexity, however, a different machinery is needed here.

4 Convex optimization

We now study the convergence properties of zeroth-order algorithms for solving problem (1.1)
under the assumption that f is a convex function on D and X is a non-empty closed convex
subset of D. Our methods mimic existing algorithms developed in [NS17] but use the single-
point estimator gδ defined in (3.4) instead of a multi-point estimator that may suffer from
cancellation effects. Our method is described in Algorithm 1, where ΠX : D → X denotes
the Euclidean projection onto X . Note that ΠX reduces to the identity operator if X = D.

In the remainder we will assume that the iterates {xk}k∈Z>0
generated by Algorithm 1

as well as all samples {yk}k∈Z>0 and the corresponding gradient estimators {gδk(xk)}k∈Z>0

represent random objects on an abstract filtered probability space (Ω,F , {Fk}k∈Z>0 ,P),
where Fk denotes the σ-algebra generated by the independent and identically distributed
samples y1, . . . , yk−1. Therefore, xk is Fk-measurable. In the following, we use E[·] to denote
the expectation operator with respect to P.

Theorem 4.1 (Convergence rate of Algorithm 1 for convex optimization). Suppose that f
is a convex, real analytic function satisfying Assumption 3.1 as well as the Lipschitz con-
ditions (2.6) and (2.9) with L1 > 0 and L2 ≥ 0. Also assume that X is non-empty, closed
and convex and that there exists x? ∈ X with ∇f(x?) = 0. Denote by {xk}k∈Z>0

the iterates
generated by Algorithm 1 with constant stepsize µk = µ = 1/(2nL1) and adaptive smoothing
parameter δk ∈ (0, κδ̄] for all k ∈ Z>0, where κ ∈ (0, 1), and define R = ‖x1 − x?‖2. Then,
the following hold for all K ∈ Z>0.

(i) There is a constant C1 ≥ 0 such that

E [f(x̄K)− f(x?)] ≤ 1
µKR

2 + 1
KC1nR

∑K
k=1 δ

2
k + 1

KµC
2
1n

2(
∑K
k=1 δ

2
k)2

+ 1
KµC1C2n

2(
∑K
k=1 δ

2
k)(
∑K
k=1 δ

4
k)

1
2 + 1

KµC
2
2n

2
∑K
k=1 δ

4
k.

(ii) If δk = δ for all k ∈ Z>0, then we have

E [f(x̄K)− f(x?)] ≤ 1
K 2nL1R

2 + C1nRδ
2 + 1

L1
(1 +

√
K)2C2

1nδ
4.
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(iii) If δk = δ/k for all k ∈ Z>0, then there is a constant C2 ≥ 0 such that

E [f(x̄K)− f(x?)] ≤ n
K

(√
2L1R+ C2δ

2
)2
.

Under the assumptions of Theorem 4.1, problem (1.1) is convex and x? represents a
global minimizer. Note, however, that X may not contain any x? with ∇f(x?) = 0 even
if X is compact. This is usually the case if the global minimum of (1.1) is attained at the
boundary of X . If x? is not unique, one should set R = ‖x1 − P ?(x1)‖2 for the bounds not
to be trivial, with P ?(x1) = argminx? ‖x? − x1‖22, which is well-defined since f is convex,
real analytic. Explicit formulas for C1 and C2 in terms of κ, L2 etc. are derived in the proof
of Theorem 4.1.

Proof of Theorem 4.1. For ease of notation, we define rk = ‖xk − x?‖2 for all k ∈ Z>0. We
prove the theorem first under the simplifying assumption that X = D, which implies the
projection onto X becomes obsolete, that is, xk+1 = xk − µk · gδk(xk). Thus, we have

E
[
r2
k+1

∣∣Fk] = E
[
r2
k − 2µk〈gδk(xk), xk − x?〉+ µ2

k ‖gδk(xk)‖22
∣∣Fk]

= r2
k − 2µk〈∇fδk(xk), xk − x?〉+ µ2

k E
[
‖gδk(xk)‖22

∣∣Fk] ,
where the second equality follows from (3.2), the definition of gδk(xk) and the Fk-measurability
of xk and rk. The Cauchy-Schwartz inequality then implies that

E
[
r2
k+1

∣∣Fk]
≤ r2

k − 2µk〈∇f(xk), xk − x?〉+ 2µk‖∇fδk(xk)−∇f(xk)‖2 rk
+ µ2

k E
[
‖gδk(xk)‖22

∣∣Fk]
≤ r2

k − 2µk (f(xk)− f(x?)) + 2µk
(

1
6nL2δ

2
k + nCκδ

4
k

)
rk

+ µ2
kn

2
((

1
6L2δ

2
k + Cκδ

4
k

)2
+ 1

n‖∇f(xk)‖22 + 2
(

1
6L2δ

2
k + Cκδ

4
k

)
‖∇f(xk)‖2

)
≤ r2

k − 2µk (f(xk)− f(x?)) + 2nµkδ
2
k

(
1
6L2 + Cκδ

2
k + nL1µk

(
1
6L2 + Cκδ

2
k

))
rk

+ µ2
kn

2
(
δ4
k

(
1
6L2 + Cκδ

2
k

)2
+ 1

n2L1(f(xk)− f(x?))
)
,

where the second inequality exploits the convexity of f as well as Proposition 3.4 and
Corollary 3.5, while the third inequality follows from the estimates (2.6) and (2.8), which
imply that ‖∇f(xk)‖2 ≤ L1‖xk−x?‖2 and 2L1(f(xk)−f(x?)) ≥ ‖∇f(xk)‖22, respectively. To
simplify notation, we now introduce the constant C1 = 1

2L2+3Cκ, which upper bounds 1
2L2+

3Cκδ
2
k and 1

6L2 + Cκδ
2
k for any k ∈ Z>0 because all smoothing parameters belong to the

interval [−1, 1]. Recalling that the stepsize is constant and equal to µ = 1/(2nL1), the above
display equation thus simplifies to

E
[
r2
k+1

∣∣Fk] ≤ r2
k − µ (f(xk)− f(x?)) + nµδ2

kC1rk + µ2n2C2
1δ

4
k. (4.1)

Taking unconditional expectations and rearranging terms then yields

E [f(xk)− f(x?)] ≤ 1
µ

(
E
[
r2
k

]
− E

[
r2
k+1

])
+ nC1δ

2
kE [rk] + µn2C2

1δ
4
k

≤ 1
µ

(
E
[
r2
k

]
− E

[
r2
k+1

])
+ nC1δ

2
k

√
E [r2

k] + µn2C2
1δ

4
k.

Next, choose any k′ ∈ Z>0 and sum the above inequalities over all k ≤ k′ − 1 to obtain∑k′−1
k=1 E [f(xk)− f(x?)] ≤ 1

µ

(
r2
1 − E

[
r2
k′

])
+ C1n

∑k′−1
k=1 δ2

k

√
E [r2

k] + µC2
1n

2
∑k′−1
k=1 δ4

k.

(4.2)
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Clearly, the inequality (4.2) remains valid if we lower bound its left hand side by 0 and
upper bound its right hand side by increasing the upper limits of the two sums to k′. We

then obtain E[r2
k′ ] ≤ r2

1 + µC1n
∑k′

k=1 δ
2
k

√
E [r2

k] + µ2C2
1n

2
∑k′

k=1 δ
4
k. Setting tk =

√
E [r2

k]

and νk = µC1nδ
2
k for all k ∈ Z>0 and defining Tk′ = r2

1 + µ2C2
1n

2
∑k′

k=1 δ
4
k for all k′ ∈ Z>0,

we may use Lemma A.1 to conclude that√
E [r2

k′ ] ≤
1
2µC1n

∑k′

k=1 δ
2
k +

(
r2
1 + µ2C2

1n
2
∑k′

k=1 δ
4
k + ( 1

2µC1n
∑k′

k=1 δ
2
k)2
) 1

2

≤ µC1n
∑K
k=1 δ

2
k + r1 + (µ2C2

1n
2
∑K
k=1 δ

4
k)

1
2 ∀k ≤ K,

where the second inequality holds because
√
a+ b+ c ≤

√
a +
√
b +
√
c for all a, b, c ≥ 0

and because the sums increase when we increase their upper limits from k′ to K. Next,
consider the estimate (4.2) for k′ = K + 1, replace E[r2

K+1] with its trivial lower bound 0

and replace
√
E[r2

k] with the above upper bound for every k ≤ K. Noting that r1 = R and
dividing by K then yields

1
K

∑K
k=1 E [f(xk)− f(x?)]

≤ 1
µKR

2 + 1
KµC

2
1n

2∑K
k=1 δ

4
k

+ 1
KC1n

∑K
k=1 δ

2
k

(
µC1n

∑K
k=1 δ

2
k +R+ (µ2C2

1n
2
∑K
k=1 δ

4
k)

1
2

)
= 1

µKR
2 + 1

KC1nR
∑K
k=1 δ

2
k + 1

KµC
2
1n

2(
∑K
k=1 δ

2
k)2

+ 1
KµC

2
1n

2(
∑K
k=1 δ

2
k)(
∑K
k=1 δ

4
k)

1
2 + 1

KµC
2
1n

2
∑K
k=1 δ

4
k.

As E[f(x̄K) − f(x?)] ≤ 1
K

∑K
k=1 E[f(xk) − f(x?)] by Jensen’s inequality, assertion (i) thus

follows. If δk = δ ∈ (0, κδ̄] for all k ∈ Z>0, then assertion (i) implies that

E [f(x̄K)− f(x?)] ≤ 1
µKR

2 + C1nRδ
2 + C2

1Kµn
2δ4 + C2

1

√
Kµn2δ4 + C2

1µn
2δ4

≤ 1
µKR

2 + C1nRδ
2 + (C1

√
K + C1)2µn2δ4

≤ 1
K 2nL1R

2 + C1nRδ
2 + (C1

√
K + C1)2 1

L1
nδ4

≤ 1
K 2nL1R

2 + C1nRδ
2 + C2

1 (1 +
√
K)2 1

L1
nδ4,

where the last two inequalities exploit the assumption µ = 1/(2nL1). Thus, assertion (ii)
follows. Next, assume that δk = δ/k for all k ∈ Z>0. In analogy to the proof of assertion (ii),
we combine assertion (i) with the standard zeta function inequalities (A.1) to conclude that

E [f(x̄K)− f(x?)] ≤ 1
µKR

2 + 1
6π

2C1
1
KnRδ

2 + 1
90π

4C2
1

1
Kµn

2δ4

+ 1
36π

4C2
1

1
Kµn

2δ4 + 1
6
√

90
π4C2

1
1
Kµn

2δ4

≤ n
K 2L1R

2 + n
KR

1
6π

2C1δ
2 + n

KRπ
4( 1

6C1 + 1√
90
C1)2 1

2L1
δ4

≤ n
K (
√

2L1R+ C2δ
2)2,

where C2 = π2(C1/3 + C1/
√

90)/
√

2L1. The third inequality holds because µ = 1/(2nL1).
Thus, assertion (iii) follows. This completes the proof for X = D.

In the last part of the proof we show that the three assertions remain valid when X is a
non-empty closed convex subset of D. Indeed, as the projection ΠX onto X is contractive,
we have

r2
k+1 = ‖xk+1 − x?‖22 = ‖ΠX (xk − µkgδk(xk))−ΠX (x?)‖22 ≤ ‖xk − µkgδk(xk)− x?‖22.

Thus, all arguments used above carry over trivially to situations where X 6= D.
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Theorem 4.1 (iii) shows that if δk decays as O(1/k), then one needs O
(
nL1R

2/ε
)

itera-
tions to guarantee that E [f(x̄K)− f(x?)] ≤ ε. This is the first-order complexity scaled by
n [Nes03, § 2.1.5]. Theorem 4.1 can be extended to a larger class of convex optimization
problems by relaxing the assumption of constant stepsizes [Jon21]. In particular, it can be
extended to constrained optimization problems whose constraints are binding at optimality,
in which case ∇f(x?) 6= 0; see also Example 7.4 below.

5 Strongly convex optimization

We now extend the results from Section 4 to analytic objective functions f that are τ -
strongly convex over their domain D for some τ > 0, i.e., we assume that f(y) ≥ f(x) +
〈∇f(x), y − x〉 + 1

2τ‖y − x‖
2
2 ∀x, y ∈ D. If y is a stationary point with ∇f(y) = 0, then

τ -strong convexity ensures that

f(y)− f(x) ≥ 1
2τ‖y − x‖

2
2 ∀x ∈ D, (5.1)

which in turn implies via the Polyak- Lojasiewicz inequality ‖∇f(x)‖22 ≥ 2τ(f(x)− f(y)) for
τ -strongly convex functions [Nes03, Eq. 2.1.19] that

‖∇f(x)‖2 ≥ τ‖y − x‖2. (5.2)

Theorem 5.1 (Convergence rate of Algorithm 1 for strongly convex optimization). Suppose
that all assumptions of Theorem 4.1 (iii) are satisfied and that f is τ -strongly convex for
some τ > 0. Then, there is a constant C ≥ 0 such that the following inequality holds for all
K ∈ Z>0.

E[f(xK)− f(x?)] ≤ 1
2L1

(
δ2C + (1− τ

4nL1
)K−1

(
R2 − δ2C

))
An explicit formula for C in terms of n, L1, L2 and τ is derived in the proof.

Proof of Theorem 5.1. As in the proof of Theorem 4.1, we set C1 = 3(1
6L2 + Cκ) and rk =

‖xk−x?‖2 for all k ∈ Z>0, and we initially assume that X = D. Combining the estimate (4.1)
from the proof of Theorem 4.1 with the strong convexity condition (5.1) yields E

[
r2
k+1|Fk

]
≤(

1− µτ
2

)
r2
k + µC1nδ

2
krk + µ2C2

1n
2δ4
k. By taking unconditional expectations and applying

Jensen’s inequality, we then find

E[r2
k+1] ≤

(
1− µτ

2

)
E[r2

k] + µC1nδ
2
k

√
E[r2

k] + µ2C2
1n

2δ4
k (5.3a)

≤ E[r2
k] + µC1nδ

2
k

√
E[r2

k] + µ2C2
1n

2δ4
k. (5.3b)

Next, choose any k′ ∈ Z>0 and sum the above inequalities over all k ≤ k′ − 1 to obtain

E[r2
k′ ] ≤ r2

1 + µC1n
∑k′−1
k=1 δ2

k

√
E[r2

k] + µ2C2
1n

2
∑k′−1
k=1 δ4

k

≤ r2
1 + µC1n

∑k′

k=1 δ
2
k

√
E[r2

k] + µ2C2
1n

2
∑k′

k=1 δ
4
k.

By using the same reasoning as in the proof of Theorem 4.1, the last bound implies√
E [r2

k′ ] ≤ µC1n
∑k′

k=1 δ
2
k + r1 + (µ2C2

1n
2
∑k′

k=1 δ
4
k)

1
2 .

Substituting this inequality into (5.3a) for k = k′ and noting that r1 = R yields

E[r2
k′+1] ≤

(
1− µτ

2

)
E[r2

k′ ] + µ2C2
1n

2δ4
k′

+ µC1nδ
2
k′

(
µC1n

∑k′

k=1 δ
2
k +R+ (µ2C2

1n
2
∑k′

k=1 δ
4
k)

1
2

)
.
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As δk = δ/k for all k ∈ Z>0 and as the constant stepsize satisfies µ = 1/(2nL1), we may
then use the standard zeta function inequalities (A.1) to obtain

E[r2
k′+1]≤(1− τ

4nL1
)E[r2

k′ ] + C2
1

δ4

4L2
1(k′)4

+ C2
1

π2δ4

24L2
1(k′)2

+ C1R
δ2

2L1(k′)2 + C2
1

π2δ4

4
√

90L2
1(k′)2

≤(1− τ
4nL1

)E[r2
k′ ] + C1R

δ2

L1
+ 3C2

1
δ4

L2
1
,

where the last inequality follows from the elementary bounds 1
2(k′)2 < 1, 1

4(k′)4 < 1, π2

24(k′)2 <

1 and π2/(4
√

90(k′)2) < 1. As |δ| < 1, we may set C = 4n
τ (C1R+ 3C2

1/L1) to obtain

E[r2
k′+1] ≤ (1− τ

4nL1
)E[r2

k′ ] + τ
4nL1

δ2C.

Taken together, the Lipschitz inequality (2.6) and the strong convexity inequality (5.2) imply
that τ ≤ L1, which in turn ensures that τ/(4nL1) < 1. Hence, the above inequality implies
E[r2

k′+1]− δ2C ≤ (1− τ
4nL1

)
(
E([r2

k′ ]− δ2C
)
. As this estimate holds for all k′ < K, we may

finally conclude that

E[r2
K ]− δ2C ≤ (1− τ

4nL1
)
(
E[r2

K−1]− δ2C
)
≤ · · · ≤ (1− τ

4nL1
)K−1(R− δ2C).

The claim then follows by combining this inequality with the estimate E[f(xK)− f(x?)] ≤
1
2L1E[r2

K ], which follows from the Lipschitz condition (2.7). This completes the proof for X =
D. To show that the claim remains valid when X is a non-empty closed convex subset of D,
we may proceed as in the proof of Theorem 4.1. Details are omitted for brevity.

By Theorem 5.1 and the construction of C, we can enforce E[f(xK) − f(x?)] ≤ ε
for a given tolerance ε > 0 by selecting a sufficiently small smoothing parameter δ ≤
O(
√
ετ/(nL2

1)) and by running Algorithm 1 over O(nL1/τ log(L1R
2/ε)) iterations.

6 Non-convex optimization

We now extend the convergence guarantees for Algorithm 1 to unconstrained non-convex
optimization problems. Our proof strategy differs from the one in [NS17] as the smoothed
objective function fδ does not necessarily admit a Lipschitz continuous gradient. In this
setting, convergence can still be guaranteed if the initial iterate x1 is sufficiently close to
some global minimizer x?.

Theorem 6.1 (Convergence rate of Algorithm 1 for nonconvex optimization). Suppose that
all assumptions of Theorem 4.1 (iii) hold, but assume that f may be non-convex, X = D
and µk = µ = 1/(nL1) for all k ∈ Z>0. Define F = f(x1) − f(x?), where x? is a global
minimizer of problem (1.1). If ‖∇f(x1)‖22 ≤ 2nL1F , then there is a constant C ≥ 0 such
that for all K ∈ Z>0 we have

1
K

∑K
k=1 E

[
‖∇f(xk)‖22

]
≤ n

K

(
2L1F + δ2C

)
.

The dependence of C on n, L1, L2 and F can be derived from the proof of Theorem 6.1.

Proof of Theorem 6.1. As X = D, the iterates of Algorithm 1 satisfy xk+1 = xk−µk ·gδk(xk).
In addition, as f has a Lipschitz continuous gradient, the Lipschitz inequality (2.7) implies
that

f(xk+1) ≤f(xk)− µk〈∇f(xk), gδk(xk)〉+ 1
2µ

2
kL1‖gδk(xk)‖22

= f(xk)− µk‖∇f(xk)‖22 − µk〈∇f(xk), gδk(xk)−∇f(xk)〉+ 1
2µ

2
kL1‖gδk(xk)‖22.
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Taking conditional expectations on both sides of this expression, recalling that gδk is an
unbiased estimator for ∇fδk conditional on Fk and applying the Cauchy-Schwarz inequality
then yields

E [f(xk+1)|Fk] ≤f(xk)− µk‖∇f(xk)‖22
+ µk‖∇f(xk)‖2‖∇fδk(xk)−∇f(xk)‖2 + 1

2µ
2
kL1E[‖gδk(xk)‖22|Fk].

Defining C0 = 1
6L2 + Cκ, we may use the estimates (3.5) and (3.7) to obtain

E [f(xk+1)|Fk] ≤f(xk)− µk‖∇f(xk)‖22 + µkC0nδ
2
k‖∇f(xk)‖2

+ 1
2µ

2
kL1

(
n‖∇f(xk)‖22 + C2

0n
2δ4
k + 2C0n

2δ2
k‖∇f(x)‖2

)
=f(xk)− 1

2nL1
‖∇f(xk)‖22 + 1

2L1
C2

0δ
4
k + 2

L1
C0δ

2
k‖∇f(xk)‖2,

where the equality holds because the stepsize is constant and equal to µk = 1/(nL1). By
taking unconditional expectations, applying Jensen’s inequality and rearranging terms, we
then find

E[‖∇f(xk)‖2]2 ≤ E[‖∇f(xk)‖22]

≤ 2nL1E[f(xk)− f(xk+1)] + 4nC0δ
2
kE [‖∇f(xk)‖2] + nC2

0δ
4
k.

(6.1)

Next, choose any k′ ∈ Z>0 and sum the left- and rightmost terms in (6.1) over all k ≤ k′ to
obtain

E[‖∇f(xk′)‖2]2

≤
∑k′

k=1 E[‖∇f(xk)‖2]2

≤ 2nL1E[f(x1)− f(xk′+1)] + 4nC0

∑k′

k=1 δ
2
kE[‖∇f(xk)‖2] + nC2

0

∑k′

k=1 δ
4
k

≤ 2nL1F + 4nC0

∑k′

k=1 δ
2
kE[‖∇f(xk)‖2] + nC2

0

∑k′

k=1 δ
4
k,

where the third inequality holds because x? is a global minimizer of problem (1.1), which
implies E[f(x1) − f(xk′+1)] = E[f(x1) − f(x?)] + E[f(x?) − f(xk′+1)] ≤ F . Setting tk =

E[‖∇f(xk)‖2] and νk = 4nC0δ
2
k for all k ∈ Z>0, and defining Tk′ = 2nL1F + nC2

0

∑k′

k=1 δ
4
k

for all k′ ∈ Z>0, we may then use Lemma A.1, which applies because ‖∇f(x1)‖22 ≤ 2nL1F ,
to find

E[‖∇f(xk′)‖2] ≤ 2nC0

∑k′

k=1 δ
2
k +

(
2nL1F + nC2

0

∑k′

k=1 δ
4
k + (2nC0

∑k′

k=1 δ
2
k)2
) 1

2

.

As δk = δ/k for all k ∈ Z>0, the standard zeta function inequalities (A.1) imply that

E[‖∇f(xk′)‖2] ≤ nC0δ
2 π2

3 +
(

2nL1F + nC2
0δ

4 π4

90 + n2C2
0δ

4 π4

9

) 1
2

≤
√

2nL1F + nC0δ
2( 2π2

3 + π2
√

90
),

where the second inequality holds because
√
a+ b+ c ≤

√
a+
√
b+
√
c for all a, b, c ≥ 0 and

because
√
n ≤ n for all n ∈ Z≥0. Averaging the second inequality in (6.1) across all k ≤ K

and using the above upper bound on E[‖∇f(xk)‖2] for each k ≤ K finally yields

1
K

∑K
k=1 E

[
‖∇f(xk)‖22

]
≤ n
K

[
2L1F + 4C0

∑K
k=1 δ

2
k

(√
2nL1F + nC0δ

2( 2π2

3 + π2
√

90
)
)

+ C2
0

∑K
k=1 δ

4
k

]
.
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Applying the zeta function inequalities (A.1) once again and recalling that δ2
k ≤ 1 for

all k ∈ Z>0, it is then easy to construct a constant C ≥ 0 such that
1
K

∑K
k=1 E[‖∇f(xk)‖22] ≤ n

K (2L1F + δ2C).

By Theorem 6.1, we can enforce 1
K

∑K
k=1 E[‖∇f(xk)‖22] ≤ ε for a given ε > 0 by select-

ing a smoothing parameter δ ≤ O(
√
Kε/n) and by running Algorithm 1 over O(nL1F/ε)

iterations.

7 Numerical experiments

We will now assess the empirical performance of different variants of Algorithm 1 equipped
with different gradient estimators on standard test problems. Specifically, we will com-
pare the proposed complex-step estimator gcs defined in (3.4) against the forward-difference
estimator

gfd(x, δ) = 1
δ (f(x+ δy)− f(x))y with y ∼ N (0, In)

and the central-difference estimator

gcd(x, δ) = 1
2δ (f(x+ δy)− f(x− δy))y with y ∼ N (0, In),

both of which rely on Gaussian smoothing [NS17, Eq. (30)]; see also Example 2.8. As
pointed out in the introduction, the single-point estimator (1.3) displays a higher variance
and thus leads to slow convergence, in general. Therefore, we exclude it from the numerical
experiments. When using gfd or gcd, we set the stepsize of Algorithm 1 to µk = 1/(4(n+4)L1)
as recommended in [NS17, Eq. (55)]. When using gcs, on the other hand, we select the
stepsize in view of the structural properties of the given objective function f in accordance
with Theorems 4.1, 5.1 and 6.1. We recall that when δk is fixed, δk ≈ 10−8 is optimal for gfd
whereas δk ≈ 10−5 is optimal for gcd, cf. Figure 2.1a. Also, the initial iterate x1 is always
set to 0 unless stated otherwise. All experiments are performed in MATLAB on a x86 64
machine with a 4 GHz CPU and 16 GB RAM, using double precision, that is, machine
precision is 2−52 ≈ 2.2204 · 10−16.

From Sections 4–6 we know that Algorithm 1 with gcs is guaranteed to find stationary
points of a wide range of convex and non-convex optimization problems provided that its
stepsize is inversely proportional to the Lipschitz constant L1 of the gradient of f . Imple-
menting Algorithm 1 in practice thus requires knowledge of L1. Unfortunately, the Lipschitz
modulus of f is typically unknown in the context of zeroth-order optimization, and the results
of Sections 4–6 indicate that increasing L1 increases the number of iterations and decreases
the smoothing parameter δ needed to attain a desired suboptimality gap ε. These insights
are consistent with classical results in zeroth-order optimization based on multi-point gra-
dient estimators such as gfd or gcd (cf. [NS17]). As the complex-step method proposed in
this paper remains numerically stable for almost arbitrarily small smoothing parameters δ,
it may thus be preferable to classical methods when L1 is overestimated.

The experiments will show that if δ is sufficiently large for multi-point methods to be ap-
plicable, then our complex-step method converges equally fast or faster than the multi-point
methods, which obey the theoretical convergence rates reported in [NS17]. A theoretical
explanation for the better empirical transient convergence behavior of the complex-step
method is left for future work.
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(a) Suboptimality gap
f(x̄K)− f? for (7.1).

(b) Suboptimality gap
f(xK)− f? for (7.1).

(c) Cost f(x̄K) for the log
loss function (7.2).

(d) Cost f(xK) for the
log loss function (7.2).

Figure 7.1: Comparison of the single-point complex-step estimator gcs (CS) against the multi-point
Gaussian smoothing estimator gfd (GS) on two objective functions.

7.1 Unconstrained convex optimization

Example 7.1 (Quadratic test function). Assume that X = Rn and f is an ill-conditioned
version of what Nesterov calls the ‘worst function in the world ’ [Nes03, § 2.1.2], that is,
assume that

f(x) = L
(

1
2

[
(x(1))2 +

∑n−1
j=1 (x(j+1) − x(j))2 + (x(n))2

]
− x(1)

)
, (7.1)

where n = 5, L = 10−8, and x(j) denotes the jth component of x for any j ≤ n. One can
show that ∇f has Lipschitz modulus L1 = 4L and that the unique global minimizer x? of f
has coordinates (x?)(j) = 1− j/(n+ 1). In this case, the theoretical convergence guarantees
of Algorithm 1 are independent of whether gcs or gfd is used. However, starting from x1 = 0
and gradually reducing the smoothing parameter δk = δ towards machine precision exposes
the advantages of the one-point estimator gcs over the multi-point estimator gfd. Figures 7.1a
and 7.1b visualize the suboptimality gap of x̄K and xK as a function of K along a single
sample trajectory, respectively. Note that especially the performance of xK is significantly
better when gcs is used. One might argue that, despite using the optimal δ ≈ 10−8, gfd leads
to a higher suboptimality gap than gcs because of its inferior approximation quality; see,
e.g., Figure 2.1. We shed more light on this conjecture in Example 7.3, where we compare
gcs against gcd.

Example 7.2 (Logistic regression). Assume that X = Rn and f is the log loss function
used to quantify the prediction loss in logistic regression. Specifically, set

f(x) = 1
m

∑m
i=1 log

(
1 + exp

(
−viaTi x

))
(7.2)

for m = 100 and n = 2, and assume that the features ai and the labels vi are sampled
independently from the standard normal distribution on Rn and the uniform distribution
on {−1, 1}, respectively. Denoting by A ∈ Rm×n the matrix with rows aTi for all i ≤ m, one
readily verifies that L1 = 1

m‖A‖2. We compare again the empirical convergence properties of
Algorithm 1 equipped with gcs or gfd. Figures 7.1c and 7.1d visualize the objective function
values of x̄K and xK as a function of K. We observe that the cancellation effects in the cost
of x̄K are mild even if gfd is used and δk = δ is small, whereas those in the cost of xK are
significantly more pronounced.

Example 7.3 (Dimension-dependence and strong convexity). Figure 7.1 not only confirms
that the complex-step estimator gcs is less susceptible to cancellation effects than the forward-
difference estimator gfd, but it also suggests that Algorithm 1 converges faster if gcs is used
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(a) Suboptimality gap
f(x̄K)−f? for n = 1.

(b) Suboptimality gap
f(x̄K)−f? for n = 104.

(c) Suboptimality gap
f(xK)−f? for n = 1.

(d) Suboptimality gap
f(xK)−f? for n = 104.

Figure 7.2: Comparison of the single-point complex-step estimator gcs (CS) against multi-point
Gaussian smoothing estimators gfd (GSfd) and gcd (GScd) on f(x) = 1

2
‖x‖22.

instead of gfd. In view of Example 2.8, we further expect that the central-difference estima-
tor gcd should lead to faster convergence than gfd. To verify these conjectures numerically,
we now set X = Rn and f(x) = 1

2‖x‖
2
2. Figure 7.2 visualizes the suboptimality gap of x̄K

and xK as a function of K for the three gradient estimators gcs, gfd and gcd and for increasing
dimensions n ∈ {1, 10,000}, starting from x1 = n−1/21. Cancellation effects prevail even in
this simple example, for optimal smoothing parameters δk = δ. We observe that x̄K is less
susceptible to cancellation effects but converges significantly slower than xK . Even though
the central-difference estimator gcd does indeed provide a speed-up compared to the finite
difference estimator gfd, it is still dominated by the complex-step estimator gcs. As f has a
Lipschitz continuous gradient with L1 = 1 and is strictly convex with τ = 1, Theorem 5.1
ensures that for a negligible smoothing parameter δ and for an initial iterate with ‖x1‖2 = 1
the suboptimality gap of xK decays at least as fast as 1

2 (1 − 1
4n )K . Figure 7.2 also visu-

alizes this theoretical convergence rate and contrasts it with the rate 1
2 (1 − 1

8(n+4) )K for

Algorithm 1 with gcd [NS17, Eq. (57)].

7.2 Constrained convex optimization The next example revolves around a constrained
optimization problem grounded in optimal control. We remark that the (unconstrained)
infinite-horizon version of this problem could be addressed with the policy iteration scheme
proposed in [Faz+18; Mal+19].

Example 7.4 (Policy iteration). We now address the MPC problem

minimize
x={xt}T−1

t=0 ⊆Rnx

∑T−1
t=0 〈Qst, st〉+ 〈Rxt, xt〉+ 〈QsT , sT 〉

subject to st+1 = Ast +Bxt ∀t = 0, . . . , T − 1

‖xt‖∞ ≤ 1 ∀t = 0, . . . , T − 1

(7.3)

with planning horizon T ∈ Z≥0 and initial state s0 ∈ Rns . Note that the dynamic con-
straints in (7.3) can be used to express the state trajectory s = {st}Tt=0 as an affine function
of the n-dimensional input trajectory x = {xt}T−1

t=0 with n = Tnx. We can thus elim-
inate s and express the objective function of (7.3) as a quadratic function f(x) of the
inputs x alone. Similarly, we can identify the feasible set of (7.3) with the compact hyper-
cube X = {x ∈ Rn : ‖x‖∞ ≤ 1}. Hence, the MPC problem (7.3) constitutes an instance
of (1.1). We further assume that the cost matrices Q � 0 and R � 0 are known, that the
system matrices A and B are unknown, and that the costs of a given input trajectory x
can be evaluated by simulation. This implies that f is unknown but admits a zeroth-order
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(a) Suboptimality gap
f(xK) − f? for Exam-
ple 7.4.

(b) State trajectories
generated by the control
policies.

(c) Suboptimality gap
f(xK) − f? for Exam-
ple 7.5.

(d) Paths of iterates
starting at four different
initial points.

Figure 7.3: Comparison of the single-point complex-step estimator gcs (CS for µk = µ and CS(K)
for µk = 1/k) against the multi-point Gaussian smoothing estimator gcd (GScd) on the optimization
problems of Examples 7.4 and 7.5.

oracle. Throughout this experiment we set (A,B,Q,R) to the standard two-dimensional
MPC instance2 in Yalmip [Löf04], and we set T = 15 and s0 = (3, 1). We emphasize that
the optimal solution of (1.1) may reside on the boundary of X , and thus the theoretical
guarantees of Sections 4 and 5 do not apply. Nevertheless, we will show that Algorithm 1
performs better when the complex-step estimator gcs is used instead of the central-difference
estimator gcd. We initialize the algorithm at the origin and upper bound the Lipschitz
modulus of ∇f by L1 = 4 · 104. This crude bound is merely based on the operator norms
of A and B. Figure 7.3a visualizes the suboptimality gap of xK as a function of K. The
oscillations in the suboptimality gap corresponding to gcs emerge because the optimizer x?

of (7.3) resides on the boundary of X . Note that Theorems 4.1 and 5.1 do not apply even
though f is strongly convex. The reason is again that ∇f(x?) 6= 0. Convergence results
for optimization problems with boundary solutions have recently been obtained in [Jon21]
by allowing the stepsize µk to decay with k. These results even hold if we have only access
to noisy function evaluations. We thus solve problem (7.3) once again with Algorithm 1
and the complex-step estimator gcs but set µk = 1/k instead of µk = 1/(2nL1), both for
δk = δ/k with δ = 10−5. In this case, [Jon21] guarantees the suboptimality gap to decay
as O(1/K). Figure 7.3a empirically validates this theoretical result. Note also that initial
convergence is slower under a harmonically decaying stepsize. Figure 7.3b shows the state
trajectories corresponding to differently computed inputs xK for K = 5 · 104.

7.3 Non-convex optimization We finally apply our method to a classical non-convex test
problem.

Example 7.5 (Rosenbrock function). Set X =
√

2B2, and let f be the Rosenbrock function
defined through f(x) = (1 − x(1))2 + 100[x(2) − (x(1))2]2. Then, problem (1.1) is uniquely
solved by x? = (1, 1), which coincides with the global minimizer of f over R2. We compare
the complex-step estimator gcs against gcd but remark that the convergence behavior of
Algorithm 1 does not change noticeably when gfd is replaced with gcd. We also set x1 to
one of four different points in X as visualized in Figure 7.3d. Figures 7.3c and 7.3d show
the convergence of the suboptimality gap of xK and the paths of iterates generated by
Algorithm 1, respectively. Again, the complex-step estimator gcs leads to significantly faster
convergence. An additional acceleration can be achieved by decreasing δ below 10−5. In

2https://yalmip.github.io/example/standardmpc/

https://yalmip.github.io/example/standardmpc/
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this case, however, the Gaussian smoothing method eventually breaks down. We point out
that, compared to other derivative-free approaches such as the Nelder-Mead algorithm, the
convergence is slow, and future work should aim at improving our understanding of the
relative merits of these methods, e.g., fast empirical convergence (Nelder-Mead algorithm)
versus slower but guaranteed convergence (Algorithm 1).

7.4 Outlook To close the paper, we discuss potential applications of our methods in the con-
text of simulation-based optimization, where evaluating the objective function f requires
the solution of an ordinary differential equation (ODE) or a partial differential equation
(PDE). This section is illustrative only, and additional work is required to derive rigorous
convergence guarantees. We start with an optimization problem involving an ODE, which—
due to its chaotic nature—often serves as a benchmark problem in the dynamical systems
literature; see, e.g., [KBK22].

Example 7.6 (Lorenz system). The ODE

d

dt


`1(t)

`2(t)

`3(t)

 =


σ(`2(t)− `1(t))

`1(t)(r − `3(t))− `2(t)

`1(t)`2(t)− b`3(t)

 (7.4)

is commonly known as the Lorenz system [Str18, Ch. 9]. It was developed as a stylized
model of atmospheric convection, with `1, `2 and `3 representing the rate of convection, the
horizontal temperature variation and the vertical temperature variation, respectively. How-
ever, the Lorenz system also arises in the study of chemical reactions, population dynamics
or electric circuits etc. In the following we denote by ϕt(x) the time-t state of a Lorenz
system with initial state `(0) = x. Given a potentially noisy measurement p of the state at
time t ≥ 0, a problem of practical interest is to estimate the initial state x that led to p. If x
is known to belong to a closed set X ⊆ R3, then it can conveniently be estimated by solving
an instance of problem (1.1) with objective function f(x) = ‖p−ϕt(x)‖22 and feasible set X .
We expect this problem to be challenging because the Lorenz system is known to be chaotic.
Thus, slight changes in the initial state have a dramatic impact on the future trajectory.
Moreover, the objective function is not available in closed form but must be evaluated with
a numerical ODE solver. As all commonly used ODE solvers map the initial state x to an
approximation of ϕt(x) by recursively applying analytic (in fact, polynomial) transforma-
tions, the resulting instance of problem (1.1) can be addressed with Algorithm 1. We remark
that most out-of-the-box ODE solvers accept complex-valued initial conditions. Here we use
MATLAB’s ode45 routine.

In the following we set the problem parameters to σ = 10, r = 28 and b = 8/3. In
addition, we define t = 2 and X = {x ∈ R3 : ‖x − `(0)‖2 ≤ 2}, and we sample p from
the normal distribution N (ϕ2(`(0)), ε2I3), where `(0) = (10, 10, 10) and ε = 10−3. Finally,
we sample the initial iterate x1 from the uniform distribution on the boundary of X , use
L1 = 1,000 as a conservative estimate for the Lipschitz modulus of ∇f and set the smoothing
parameter to δ = 10−10. By Theorem 6.1, Algorithm 1 converges to a stationary point x?

of the objective function with ∇f(x?) = 0 provided that ‖∇f(x1)‖2 is sufficiently small. See
the discussion below Example 7.4 for the case ∇f(x?) 6= 0. Figure 7.4a shows the decay of
f(xK) with the total number K of iterations for 10 independent simulation runs. Figure 7.4b
visualizes the corresponding state trajectories3 {ϕt(xK)}t∈[0,2] for K = 105. Only 6 of the
10 trajectories are shown for better visibility.

3A video of the state evolution is available from https://wjongeneel.nl/Lorenz.gif.

https://wjongeneel.nl/Lorenz.gif
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(a) Decay of f(xK) with the to-
tal number K of iterations for 10
independent simulation runs.

(b) Trajectories of (7.4) starting
from `(0) (unknown), x0 (ini-
tial) and xK for K = 105 (op-
timized).

Figure 7.4: Estimating the initial state `(0) of a Lorenz system (7.4) from a noisy measurement p
of the state `(2) = ϕ2(`(0)) (grey circle in 7.4b) at time 2. Even though the initial estimate x0 is
close to the optimized estimate xK , ϕ2(x0) is far from ϕ2(`(0)).

To close this section, we highlight that the complex-step method offers distinct benefits
in the context of simulation-based optimization, where the objective function f can only
be evaluated within prescribed error tolerances. In Example 7.6, for instance, the evalu-
ation of f is corrupted by ODE integration errors. Unfortunately, such errors can have
a detrimental impact on classical finite-difference-based optimization schemes. Indeed, the
central-difference estimator 1

2δk
(f(xk+δkyk)−f(xk−δkyk))yk for ∇f(xk) is useless for opti-

mization unless the numerical errors in the evaluation of f are significantly smaller than δk.
As δk must decay to 0 as k grows, so must the numerical tolerances. Otherwise, the ODE
integration errors would dominate, which could be seen as another manifestation of catas-
trophic cancellation. Inexact evaluations of f can conveniently be modeled as outputs of
a noisy zeroth-order oracle. While this paper was under review, it has been shown that
convergence guarantees for Algorithm 1 can be obtained even if the complex zeroth-order
oracle is affected by independently and identically distributed noise and even if the sequence
of smoothing parameters {δk}k∈Z>0

is chosen independently of the noise statistics [Jon21].
This provides strong evidence that the complex-step approach may be able to overcome
the practical obstructions outlined above that plague classical finite-difference schemes in
simulation-based optimization. As integration errors are arguably not purely random and
serially independent, however, further research is needed.

We highlight that complex-step derivatives are routinely used in PDE-constrained opti-
mization. For example, they are used in a recent airfoil optimization package4 developed in
2021. The underlying algorithm relies on sequential quadratic programming [NW06, Ch. 18]
and assumes that the complex-step derivative equals the gradient. In contrast, our analysis
provides a rigorous treatment of approximation errors.

Additional applications of the complex-step derivative are discussed in [MH13, § 3.2].

8 Conclusions and future work

The cancellation effects that plague all multi-point gradient estimators tend to have a detri-
mental effect on the numerical stability and the convergence behavior of zeroth-order algo-
rithms. These numerical problems can sometimes be mitigated by replacing the terminal

4https://mdolab-cmplxfoil.readthedocs-hosted.com.

https://mdolab-cmplxfoil.readthedocs-hosted.com
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iterate xK with the averaged iterate x̄K = 1
K

∑K
k=1 xk, at the cost of slower convergence.

The single-point complex-step gradient estimator thus provides an attractive alternative to
the classical gradient estimators because it leads to provably fast and numerically stable
algorithms. As pointed out in [AMH10], smoothness is not a necessary condition for the
applicability of the complex-step approximation, which suggests that the analyticity as-
sumption used in this paper can perhaps be relaxed. Other promising research directions
would be to extend our convergence guarantees to the class of weakly convex functions and
to investigate multi-batch as well as online settings.

A Appendix

The proofs of our convergence results rely on the following lemma borrowed from [SRB11].

Lemma A.1 ([SRB11, Lem. 1]). If {tk}k∈Z>0
and {νk}k∈Z>0

are two sequence of non-
negative real numbers, while {TK}K∈Z>0

is a non-decreasing sequence of real numbers with

T1 ≥ t21 such that t2K ≤ TK +
∑K
k=1 νktk ∀k ∈ Z>0, then we have

tK ≤ 1
2

∑K
k=1 νk +

(
TK + ( 1

2

∑K
k=1 νk)2

) 1
2 ∀K ∈ Z>0.

In addition, several proofs in the main text make use of the inequalities∑J
j=1 j

−2 ≤ ζ(2) = 1
6π

2 and
∑J
j=1 j

−4 ≤ ζ(4) = 1
90π

4 ∀J ∈ Z>0, (A.1)

which are obtained by truncating the series that defines the Riemann zeta function.
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matrix function”. Numerical Algorithms 53 (2010), pp. 133–148.

[APT20] A. Akhavan, M. Pontil, and A. Tsybakov. “Exploiting higher order smoothness in derivative-free
optimization and continuous bandits”. Neural Information Processing Systems. 2020, pp. 9017–
9027.

[ASM15] R. Abreu, D. Stich, and J. Morales. “The complex-step-finite-difference method”. Geophysical
Journal International 202.1 (2015), pp. 72–93.

[Bau17] A. Bauer. “Five stages of accepting constructive mathematics”. Bulletin of the American Math-
ematical Society 54.3 (2017), pp. 481–498.

[BBN19] A. S. Berahas, R. H. Byrd, and J. Nocedal. “Derivative-free optimization of noisy functions via
quasi-Newton methods”. SIAM Journal on Optimization 29.2 (2019), pp. 965–993.



30

[BCS21] A. S. Berahas, L. Cao, and K. Scheinberg. “Global convergence rate analysis of a generic line
search algorithm with noise”. SIAM Journal on Optimization 31.2 (2021), pp. 1489–1518.

[Bel08] J. L. Bell. A Primer of Infinitesimal Analysis. Cambridge University Press, 2008.

[Ber+21] A. S. Berahas, L. Cao, K. Choromanski, and K. Scheinberg. “A theoretical and empirical compar-
ison of gradient approximations in derivative-free optimization”. Foundations of Computational
Mathematics (2021), pp. 1–54.

[Ber92] M. Berz. “Automatic differentiation as nonarchimedean analysis”. Computer Arithmetic and
Enclosure Methods. Ed. by L. Atanassova and J. Herzberger. Elsevier Science Publishers, 1992,
pp. 439–450.

[Bez+17] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. “Julia: A Fresh Approach to Numerical
Computing”. SIAM Review 59.1 (2017), pp. 65–98.

[BG22] K. Balasubramanian and S. Ghadimi. “Zeroth-order nonconvex stochastic optimization: Han-
dling constraints, high dimensionality, and saddle points”. Foundations of Computational Math-
ematics 22.1 (2022), pp. 35–76.

[BP16] F. Bach and V. Perchet. “Highly-smooth zero-th order online optimization”. Conference on
Learning Theory. 2016, pp. 257–283.

[Bra+18] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A.
Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: Composable transformations
of Python+NumPy programs. Version 0.3.13. 2018. url: http://github.com/google/jax.

[Cai+22] H. Cai, D. Mckenzie, W. Yin, and Z. Zhang. “A one-bit, comparison-based gradient estimator”.
Applied and Computational Harmonic Analysis 60 (2022), pp. 242–266.

[CH04] M. G. Cox and P. M. Harris. Numerical Analysis for Algorithm Design in Metrology. Software
Support for Metrology Best Practice Guide No. 11. National Physical Laboratory, Teddington,
2004.

[CSV09] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization.
SIAM, 2009.

[CTL22] X. Chen, Y. Tang, and N. Li. “Improved single-point zeroth-order optimization using high-pass
and low-pass filters”. International Conference on Machine Learning. 2022, pp. 3603–3620.

[d’A08] A. d’Aspremont. “Smooth optimization with approximate gradient”. SIAM Journal on Opti-
mization 19.3 (2008), pp. 1171–1183.

[DGN14] O. Devolder, F. Glineur, and Y. Nesterov. “First-order methods of smooth convex optimization
with inexact oracle”. Mathematical Programming 146.1 (2014), pp. 37–75.

[Duc+15] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono. “Optimal rates for zero-order con-
vex optimization: The power of two function evaluations”. IEEE Transactions on Information
Theory 61.5 (2015), pp. 2788–2806.

[Ell09] C. M. Elliott. “Beautiful differentiation”. ACM Sigplan Notices 44.9 (2009), pp. 191–202.

[Faz+18] M. Fazel, R. Ge, S. Kakade, and M. Mesbahi. “Global convergence of policy gradient methods for
the linear quadratic regulator”. International Conference on Machine Learning. 2018, pp. 1467–
1476.

[FKM04] A. Flaxman, A. T. Kalai, and H. B. McMahan. “Online convex optimization in the bandit
setting: Gradient descent without a gradient”. arXiv preprint arXiv:0408007 (2004).

[Gas+17] A. V. Gasnikov, E. A. Krymova, A. A. Lagunovskaya, I. N. Usmanova, and F. A. Fedorenko.
“Stochastic online optimization. Single-point and multi-point non-linear multi-armed bandits.
Convex and strongly-convex case”. Automation and Remote Control 78.2 (2017), pp. 224–234.

[GL13] S. Ghadimi and G. Lan. “Stochastic first-and zeroth-order methods for nonconvex stochastic
programming”. SIAM Journal on Optimization 23.4 (2013), pp. 2341–2368.

[GM78] J. D. Gray and S. A. Morris. “When is a function that satisfies the Cauchy-Riemann equations
analytic?” The American Mathematical Monthly 85.4 (1978), pp. 246–256.

[Gol+20] D. Golovin, J. Karro, G. Kochanski, C. Lee, X. Song, and Q. Zhang. “Gradientless Descent:
High-Dimensional Zeroth-Order Optimization”. International Conference on Learning Repre-
sentations. 2020.

[GW08] A. Griewank and A. Walther. Evaluating derivatives: Principles and techniques of algorithmic
differentiation. SIAM, 2008.

http://github.com/google/jax


31

[GWX17] Y. Gao, Y. Wu, and J. Xia. “Automatic differentiation based discrete adjoint method for aero-
dynamic design optimization on unstructured meshes”. Chinese Journal of Aeronautics 30.2
(2017), pp. 611–627.

[HL14] E. Hazan and K. Levy. “Bandit convex optimization: Towards tight bounds”. Neural Information
Processing Systems. 2014, pp. 784–792.

[HS23] W. Hare and K. Srivastava. “A numerical study of applying complex-step gradient and Hessian
approximations in blackbox optimization”. Pacific Journal of Optimization 19.3 (2023), pp. 391–
410.

[Hu+16] X. Hu, L. Prashanth, A. György, and C. Szepesvari. “(Bandit) convex optimization with biased
noisy gradient oracles”. Artificial Intelligence and Statistics. 2016, pp. 819–828.
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