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Abstract

We consider the problem of safely controlling an unknown stochastic linear dynamical system
subject to an infinite-horizon discounted quadratic cost. Many of the existing model-based
approaches for handling the corresponding robust optimal control problem resort to game
theoretic formulations of the uncertainty, either explicit- or implicitly. It is widely known
that in practice the corresponding control laws can be rather conservative. In this work, we
give further theoretical evidence that this is an inherent property of the underlying game
theoretic formulation. We show that the most common uncertainty sets, for example result-
ing from linear least-squares identification, are almost surely different from the geometry a
game theoretic adversary samples from. Nevertheless, we provide theoretical- and empirical
evidence that a game theoretic control law has favourable properties over the nominal control
law when the estimated model is obtained using regularized linear least-squares.
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“Mathematics is the part of physics where experiments are cheap.”
— V.I. Arnold





Chapter 1

Introduction

1-1 The Linear Quadratic Regulator, Still Relevant

It can be argued1 that back in 1696, Bernoulli started the field of Optimal Control in
Groningen[SW97]. He was interested in how to slide from point A to B, under gravity,
the fastest, i.e., the brachistochrone problem, which is a minimal-time problem. Together
with the fact that Bernoulli was a mentor of Euler, thereby indirectly, Lagrange, the field
of the calculus of variations was born. It took a few centuries before the field of Optimal
Control was actually established. Around the 1950s the drawbacks of the frequency domain
approach within control were recognized and as Lewis [Lew92] puts it nicely “On the failure
of any paradigm, a return to historical and natural first principles is required.” Think about
Bernoulli, linking optimality and natural first principles. Then just before the end of the
1950s, Bellman and Pontryagin brought to life the two pillars of Optimal Control theory:
Dynamic Programming and the Maximum Principle, respectively. This was an extraordinary
fruitful period, since in 1960, Kalman, Bertram and Bucy introduced the power of Lyapunov
theory, the Linear Quadratic Regulator (LQR) and the Kalman filter. Even the dual rela-
tionship was immediately acknowledged. This work hinges on the elegant stability theory
by Lyapunov from 1892 but also on the work of Jacobo Riccati, who in the period of 1719-
1724 started the investigation in the family of equations now bearing his name. Interestingly,
the first correspondence Riccati had about this equation was with a Bernoulli (Nicolaus II)
[BLW91, ch. 1]. After the legendary papers by Kalman and coworkers, LQR theory was born
and further developed by people like Brockett, Willems and Wonham, to name a few. The
main reason for further development and study was of course the remarkable fact that we
have, up to algebraic equations, closed-form solutions.
But why do people still care about this LQR problem?
Although most, if not all, real world dynamical system are non-linear, Linear Quadratic (LQ)
problems still appear in for example economics [Pri10] and medicine [CDS+09], but most and
for all, the dual problem, the Kalman filter is still heavily used. For example, this filter got
us to the moon [GA10]! This is however not our reason of interest.

1I have the same bias as those authors. He was Swiss, but working in Groningen.
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2 Introduction

1-1-1 Finite-Samples, a Paradigm Shift

Towards safe and practical control algorithms we can observe a paradigm shift in the com-
munity. The general approach has always been to use some statistical algorithm to estimate
model parameters based on experimental data and design a controller solely based on this
model. As elegant as the theory is, classical system identification theorems are asymptotic,
i.e., they hinge on infinite sample lengths (cf. [VV07, ch. 9]). In practice we do not have
that much data, instead, one is interested in what can be said about controller performance,
on a yet partially unknown system, based on finite data.
A first step in this direction is to at least identify online, i.e., be adaptive [AW73, CK98],
which nowadays one might refer to as reinforcement learning. This simply means that at each
step you update your model based on incoming information. The main paradigm shift we
currently see (in control theory) was first described by Claude-Nicolas Fiechter. In his work
he introduced probabilistic performance bounds for the discounted discrete-time LQR problem
[Fie97], which was recently formalized to finite-sample and regret-bounds for averaged cost
LQR [DMM+17, DMM+18]. Initial work on the sample complexity in Reinforcement Learning
has been done before in [Kak03]. However, there the focus was on finite state and action
spaces, while we consider them to be uncountable.
All of these approaches aim for “end-to-end” (from data to policy) finite-sample (sometimes
called “non-asymptotic”) probabilistic performance bounds. For example, under certain as-
sumptions, this allows one to say that after having obtained N data-points, a Least-Squares
identification approach combined with LQR design will stabilize the real system with a prob-
ability of at least 1−δ. The most straight-forward path to these bounds is (1) obtain data, (2)
identify a model, (3) compute probabilistic error bounds on the parameters of the model and
(4) design a controller which can handle these errors in the model. These kind of controllers
are referred to as robust controllers with probabilistic performance bounds.
For example, if we take the example from Figure 1-1 (a), then after just two sample points
we cannot distinguish the three shapes. However, in (b), after four points we know it cannot
be a triangle and in (c), after just five points, we can be sure it is a circle, although the shape
is made up out of a continuum of points.

Figure 1-1: After five samples we can distinguish a circle from a square and a triangle.

The crux is, under certain conditions, one can be rather sure about the parametrization of
a linear dynamical system, even after having just obtained a finite set of data. This would
allow for safely introducing our favourite control algorithms into the real world, without
perfect models.

Wouter Jongeneel Master of Science Thesis



1-2 Contribution 3

Now, the incentive to study the discrete-time LQR problem within the aformentioned model-
based learning framework follows from the problem being an ideal benchmark. The reason is
four-fold; (i), the Linear Quadratic Regulator problem is well-studied (cf. [Kal60, BLW91,
LR95, Ber05]) and has a closed-form solution which makes it already a good benchmark
problem, especially since the action and state space are uncountable; (ii), it is notorious
for being a linear optimal control problem for which self-tuning (see [AW73]) does not hold
[Pol87, vS94]; (iii), in contrast to the continuous-time LQR, the LQG [Doy78] as well as
the discrete-time LQR (cf. [KS72]) have generally no, or worse stability margins [Sha86];
(iv), our understanding of the corresponding perturbating theory is limited, especially in the
discrete-time case, and often hinges on assuming A to be invertible [LR95, KPC93, Sun98]
such that the robust LQR (RLQR) problem is not merely a corollary to LQR. In other words,
the LQR problem is non-trivial when the dynamical system is partially unknown, but if it is
known, we understand it very well.

As mentioned before, this framework can be largely splitted into two parts; (1), the identifi-
cation and (2), the design of a robust control law. These are both interesting and still chal-
lenging directions. However, motivated by the involved and truncated optimization programs
in [DMM+17, DMM+18] we set out to investigate if we can retain exactness of the RLQR
solution while not sacrificing tractability of the algorithm. The motivation for tractability is
obvious, the motivation for exactness follows from the desire to overcome, or at least, better
understand conservatism within robust control.

The desire to solve RLQR problems is not new, however, neatly linking identification and
control is still largely an open problem is, e.g., see the 2005 survey paper [Gev05]. A classical
µ-synthesis approach is indeed generally intractable [PR93, BYDM93] while as explained in
Chapter 2, a tractable Linear Matrix Inequality (LMI) approach like proposed in [dOBG99]
may be conservative, plus, to paraphrase Gevers [Gev05, p.9], in many cases is the uncertainty
set God-given, instead of directly related to statistics. This work investigates to what extend
dynamic game theory can be a middle-ground. The motivation for game theory is the close
(multiplier) relation to robust control, while having readily available computational tools
(chapter 3 elaborates on this remark).

1-2 Contribution

Towards a better understanding of tractable and exact design of robust linear quadratic
regulators, our contributions are:

(i) New set theoretic interpretation of Linear-Quadratic (LQ) dynamic games as robust LQ
regulators, see Definition 3-1.1, Proposition 3-2.1 and Corollary 4-3-1 plus section 3-2-1
for an extension, with respect to [JSM19], to uncertainty in A and B.

(ii) An exact solution to a robust LQR problem, including a method to, numerically and
analytically, obtain worst-case models given any stabilizing linear controller, see Propo-
sition 3-2.3, Theorem 3-2.4 and Lemma 3-4.1. In section 3-2-3 these results are linked
to standard norm-balls.

(iii) Moreover, we provide insights in qualitative features of the worst-case model in sections
3-3 and 3-4-2-3-4-4. Specifically, in Lemma 3-3.3.(iii) and section 3-4-2-5 we show that

Master of Science Thesis Wouter Jongeneel



4 Introduction

our framework opens up the door for robust optimization over topologically equivalent
drift terms. Furthermore, by using the structure from Definition 3-1.1, we show in sec-
tion 3-3-1 that ellipsoidal confidence sets, as often seen in practice, are almost surely
conservative within a game theoretic context. In addition, we show in Lemma 3-3.10
that generic behaviour resulting from additive perturbations to (A,B) can almost surely
not be generated from a dynamic game. Even more so, Lemma 3-3.3.(iv) shows that
the our worst-case model is larger, in Frobenius-norm, than the nominal model , which
turns out to be in conflict with standard unbiased estimators, e.g., see section 3-4-3-1.
On the other hand, this lemma suggests that our game theoretic controller might be a
more natural choice than the nominal LQ regulator once `2-regularization is used during
identification. Section 3-4-4 and secion 3-5-2 present affirmative empirical evidence that
our framework is capable of outperforming nominal control laws on the Laplacian ex-
ample from [DMM+17, DMM+18], indeed, especially after introducing `2-regularization
during identification.

These results imply that a game theoretic formulation of robust LQ regulators is inherently
conservative, but nevertheless has a rich structure, which the author believes, can, and should
be, further explored.

In addition, chapter 4 shows initial work on gradient algorithms within dynamic game theory,
which in this thesis neatly functions as a ridiculously long (but otherwise missing) proof of
path-connectedness of our uncertainty set.

Part of the initial work resulted in the short conference paper [JSM19]; this thesis work is a
significant elaboration. However, there is indeed substantial overlap with introductory parts
of chapter 2 and chapter 3.

1-3 Outline, Structure of the Thesis

In section 1-1 we have just outlined the motivation behind this thesis. Then, in chapter 2
we formally introduce the problem and motivate the viewpoint taken in the next chapters.
Chapter 3 presents the main results, starting with the introduction of a new uncertainty set
and corresponding RLQR solution, followed by a structural investigation and ample numerical
experiments. In chapter 4 we take a brief detour and discuss gradient-based policy iteration
in the context of dynamic games. Finally, chapter 5 contains open-problems and concludes
the work.

Two appendices accommodate auxiliary tools (A) and further background information (B).

All simulations are carried out using MATLAB R2018b. Other figures are made using
Inkscape, with textext2. In addition, the cover is made using SolidWorks 2018, the Gimp
2.10 and online chess models 3.

Notation We use standard notation, but to be clear. Let R≥0 denote the set of non-negative
real numbers and N the set of non-negative integers. If z ∈ {1, 2, . . . , Z}, we write z ∈ Z.

2https://textext.github.io/textext/
3https://grabcad.com/library/chess-board-and-pieces-3
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1-3 Outline, Structure of the Thesis 5

The n×m matrix of all ones is denoted by 1n×m whereas In is the identity element of Rn×n
and δij is the Kronecker delta. The general linear group is denoted by GL(n,R), where a
superscript indicates the sign of the determinant, e.g. T ∈ GL+(n,R) ⇐⇒ det(T ) > 0. The
operation vec(A) vectorizes the matrix A by means of column stacking and A⊗B denotes the
Kronecker product between A and B. Let Sn+ be the cone of symmetric positive semi-definite
matrices on which the ordering is denoted by A � B. The largest singular-value of a matrix
A equals ‖A‖2 whereas λ(A) denotes the entire spectrum of A, ρ(A) = maxi=1,...,n |λi| is the
spectral radius of A ∈ Rn×n and κ(A) = σmax(A)/σmin(A) is the condition number of A. For
Tr(·) being the trace operator, the inner-product between A ∈ Rm×n, B ∈ Rm×n is defined
as 〈A,B〉 = Tr(A>B) such that 〈A,A〉 = ‖A‖2F for ‖ · ‖F the Frobenius norm. Then ‖X‖2F,Q
is used to denote Tr(X>QX) for Q � 0. Furthermore, A is said to be exponentially stable
if its spectrum is fully contained in the open unit disk, denoted Dr, r = 1. We speak of
stability when the spectrum can only be contained in cl(D1), which is the closed unit disk.
The expectation operator is given by E[·], whereas P{E} denotes the probability of some event
E . A random variable with mean µ and covariance Σ for a distribution P is expressed by
X ∼ P(µ,Σ). If a distribution P is supported on Ξ ∈ Rξ, it is an element of P(Ξ). Optimality
is indicated with a ?, so x? is for example the minimizer of a function f(x) with f? = f(x?).
Also, in the context of an optimization program, s.t. stands for subject to, while in a control
context the subscript c` stands for closed-loop. The limit of a function f(x) for x → y from
below, is denoted limx↑y f(x). At last, to emphasize when we use scalar systems, the notation
xk+1 = axk is used instead of the generic capitalized xk+1 = Axk.

Acronyms and Terminology We will use just a few acronyms, which are standard anyway.
Most notably: Linear Quadratic (LQ), LQ regulator (LQR), Robust LQR (RLQR), Linear
Matrix Inequality (LMI), Semi-Definite Program (SDP), Quadratic Program (QP) and Linear
Program (LP).

Moreover, we barely use terminology, except for one word: nominal. Here we take the
definition of the word as used in the control literature [VF95]. To paraphrase, “To design
a robust controller, we need a nominal model and a description of an additive or multiplica-
tive uncertainty from which the controller will be robust.” For example, given a (partially)
unknown dynamical system Σ : {xk+1 = Axk + Buk, let (Â, B̂) be estimators for (A,B),
where it is known that A = Â + ∆A, ∆A ∈ ∆A, B = B̂ + ∆B, ∆B ∈ ∆B. Then we call
Σ̂ : {xk+1 = Âxk + B̂uk the nominal model, the uncertainties extend from there. Moreover,
any optimal control law for (Â, B̂) will be a nominal controller. Indeed, the most frequently
used models and controllers in practice are the nominal ones.

Master of Science Thesis Wouter Jongeneel
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Chapter 2

The Robust Linear Quadratic Regulator
Problem

In chapter 1 we saw that towards the implementation of safe control algorithms we like to
solve some robust control problem. Then, in this chapter we will formally introduce the
robust control problem at hand: the Robust Linear Quadratic Regulator (RLQR) problem.
The question remains, robust with respect to what? In section 2-2 we address precisely this
question via a discussion on theoretically interesting and practically relevant uncertainty sets.

We will not discuss the standard LQR problem. The reader who wants to learn more about
classical linear (discrete-time) control and the corresponding LQ regulator, is referred to
[LR95, Cai18].

2-1 Introduction to The Discrete-Time Discounted RLQR

In this section we formally introduce the robust control problem studied in this work. Consider
the stochastic linear discrete-time dynamical system

Σ :

xk+1 = Axk +Buk + vk,

vk
i.i.d.∼ P(0,Σv), x0 ∼ P(0,Σ0),

(2-1.1)

where A ∈ Rn×n, B ∈ Rn×m, Σ0,Σv ∈ Sn++, and {vk}k∈N is a white noise sequence of
independent random variables with zero mean and a time-invariant covariance matrix Σv,
i.e., E[vi] = 0 and E[viv>j ] = δijΣv for all i, j ∈ N. In our setting, we assume the system
matrices (A,B) not to be known precisely. Our prior estimate of (A,B) is denoted by (Â, B̂)
such that

A = Â+ ∆A, B = B̂ + ∆B

where (∆A,∆B) represents our prior estimation error. A particular example of such a setting
naturally emerges in statistics or identification problems where (Â, B̂) is the current estimate

Master of Science Thesis Wouter Jongeneel



8 The Robust Linear Quadratic Regulator Problem

of (A,B), and � represents an uncertainty set containing (∆A,∆B) with high probability, i.e.,
P
{
(∆A,∆B) ∈ �

}
≥ 1− δ for a small prespecified confidence level δ.

Given the matrices Q ∈ Sn+, R ∈ Sm++, discount factor α ∈ (0, 1) and the tuple (Â, B̂,�,Σv,Σ0)
we seek an optimal policy π? = {µ?0, µ?1, . . . } that solves the discounted Robust Linear-
Quadratic Regulator (RLQR) problem1:

inf
{µk}k∈N

sup
(∆A,∆B)

E
x0,v

[ ∞∑
k=0

αk
(
x>k Qxk + u>k Ruk

)]
,

s.t. xk+1 = (Â+ ∆A)xk + (B̂ + ∆B)uk + vk,

vk
i.i.d.∼ P(0,Σv), x0 ∼ P(0,Σ0),

uk = µk(xk), (∆A,∆B) ∈ �.

(2-1.2)

The main objective of this work is to study the full uncertainty set � coming from game theory
in relation to common uncertainty sets. To this end, we first proceed with an assumption and
several important definitions that clarify and facilitate the presentation of the results in the
later stages.

Assumption 2-1.1 (Linear time-invariant policy). In the problem (2-1.2), we restrict the class
of control policies µk to linear time-invariant controllers µk(x) = Kx where K ∈ Rm×n is a
constant matrix for all k ∈ N, referred to as a “feedback”- or “control” gain.

To continue, define a shorthand notation for the discounted LQR cost function as follows.

Definition 2-1.2 (Discounted LQ cost). Consider the dynamical system xk+1 = Axk+vk where
the noise process and the initial condition follow vk

i.i.d.∼ P(0,Σv) and x0 ∼ P(0,Σ0). Then
we introduce the linear quadratic (LQ) cost function J : Rn×n × Sn+ → R≥0 ∪ {∞} as

J (A,Q) = E
x0,v

[ ∞∑
k=0

αkx>k Qxk

]
.

Since we consider a discounted LQ cost, it is helpful to also introduce a respective notion of
stability. In fact, conventional stability is not necessarily required for the LQ cost to take
finite values.

Definition 2-1.3 (
√
α-stability (cf. Def. 7.6.1 [HS07])). Let α ∈ (0, 1], then the matrix A is√

α-stable when its spectrum is fully contained in the open disk with radius α−1/2, i.e.,
√
αA

is exponentially stable. So exponential stability =⇒
√
α-stability, but not the other way

around.

2-2 Meaningful Uncertainty Sets

In this section we discuss what this � could actually be. With our finite-sample framework
in mind, we deliberately chose for a time-domain, and especially system-theoretic, viewpoint
of Robust Control.

1Without loss of generality, we omit cross terms in the cost, e.g., of the form x>k Suk, to keep notation
simple.
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2-2 Meaningful Uncertainty Sets 9

But first, it is the authors opinion that the community has a slight, yet increasing, problem
with using pop-terminology. Linear regression is all of a sudden “supervised learning” and
PID control would probably qualify as an “A.I.” to some.
Unfortunately, the abundance of buzzwords has also manifested itself in the exorbitant use of
the words “robust” and “optimal”. The problem is that classifying something as either robust
or optimal is completely meaningless if it is not specified with respect to what we have this
idealized performance. The statement that controller K ′ is “more robust” than controller K is
therefore absolute nonsense, for example, any linear controller is robust against a well-defined
set of model perturbations, in our case: {(∆A,∆B) :

√
αρ(A + ∆A + (B + ∆B)K) < 1}.

However, in practice one is usually concerned with a smaller (and closed) set of uncertainties.
In the next section we shed some light on what these errors might be.

2-2-1 Existence and Uniqueness of Solutions

As the first example will show, Assumption 2-1.1 restricts possible �. There is no time-
invariant K which can stabilize all stabilizable pairs (A,B):
Example 2-2.1 (The lack of a universal linear control law). Consider for some finite scalar c
and d ∈ (−1, 1) the matrices

A1 =
(

1 c
0 d

)
, A2 =

(
−1 c
0 d

)
, B =

(
1
0

)
.

Then both (A1, B) and (A2, B) are stabilizable. However if we let the controller be of the form
K =

(
K1 K2

)
then (A1, B) needs K1 ∈ (−2, 0) while (A2, B) needs K1 ∈ (0, 2) to make the

closed-loop matrix exponentially stable. Since (−2, 0) ∩ (0, 2) = {∅} there is no K which can
exponentially stabilize both systems.

Example 2-2.1 can be interpreted in the spirit of switching control, i.e., once (A1, B) switches
to system (A2, B) your linear control law should switch as well. To aid the discussion we use
the next Lemma:
Lemma 2-2.2 (Discrete-time version of Lemma 3.1 from [FB86]). Let Σ(min)

n,m be the set of min-
imal realizations (A,B) with A ∈ Rn×n, B ∈ Rn×m. We consider the intersection of some
compact subset K ⊂ Rn×n × Rn×m with Σ(min)

n,m , simply denoted Σ?. Let β ∈ (0, 1) be some
fixed decay rate. Then,

(i) there exist compact subsets Σi, such that for a finite f we have
⋃f
i=1 Σi = Σ?;

(ii) moreover, there exists a scalar c ∈ (0, 1 − β) such that ∀i ∈ {1, . . . , f} we have ρ(A +
BKi) ≤ (β + c) for (A,B) ∈ Σi and a corresponding set of control gains {Ki}fi=1.

Proof. Given some σ ∈ Σ? and sufficiently small ε > 0 and let Kσ : ρ(A+BKσ) < β + ε < 1.
By continuity of the eigenvalues in (A,B) there is some neighbourhood Uσ around σ such
that all systems in Uσ stabilized by Kσ have their eigenvalues strictly bounded by β+ε. Thus
we can find an open-cover of Σ?, i.e., Σ? ⊂

⋃
σ Uσ. However, since Σ? is compact we can

find a finite sub-cover, i.e., for some f we have Σ? ⊂
⋃f
i=1 Uσi . Then the corresponding set

of control gains Ki is the finite set from part (ii), whereas Σi = Uσi are the corresponding
compact sets from part (i). Letting c = argmaxi{β + εi} concludes the proof.
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10 The Robust Linear Quadratic Regulator Problem

Figure 2-1: (a) Schematic overview of Lemma 2-2.2. (b) for S1, both K1 and K2 can stabilize
the set, while S2 cannot be stabilized completely by any of the four controllers.

This segmentation of Σ? is visualized in part (a) of Figure 2-1.

As indicated by Lemma 2-2.2, given a compact subset K intersected with the set of stabilizable
pairs (A,B) one can indeed introduce a finite covering where all the elements of each segment
can be stabilized via a common feedback gain, e.g., (A1, B) and (A2, B) from Example 2-2.1
are never members of the same segment while for example ‖A1‖2 = ‖A2‖2. This simple
observation indicates that the existence of a solution to (2-1.2) is not immediately obvious,
even for simple norm-balls. Think of the set S2 in Figure 2-1 (b), controllers K2,K3,K4 can
all stabilize a part of S2, but not the entire set. In other words, (2-1.2) with � = S2 would
be infeasible2. Thus, Lemma 2-2.2 tells us that our nominal system plus our uncertainty set
should be contained in some Σi for the problem to be well defined. It turns out that this
characterization, i.e., existence conditions for robust controllers, are pretty much an open
problem to the point that Ackermann even argues that “the design of a robust controller is
more of an art than a science [Ack02, p.75].”

Regarding uniqueness, think of the set S1 in Figure 2-1, both K1 and K2 can stabilize the
set of models. To order the set of controllers, a cost function can be introduced, after which
the least expensive control law is implemented. However, usually, we have no knowledge about
stability, but merely about the induced cost. Is optimality enough? Consider a scalar example;
we would like to find argmin{uk}∞k=0

∑∞
k=0 u

2
k constrained by xk+1 = axk + uk, |a| > 1. This

is a classic problem, minimizing the energy, which sounds like it must be related to stability.
The solution is obviously u?k = 0 ∀k, but the resulting closed-loop trajectory is unstable! So
yes, you can optimize almost everything, but the corresponding interpretation is not included.
One of the nice properties of the family of LQ control problems is that the cost, and qualitative
properties like stability, can be linked.

2Strictly speaking, there might be another cover with some Ki which does stabilize the full set S2. Figure 2-
1.(b) merely visualizes what we mean with � being too big, think of Example 2-2.1.
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2-2 Meaningful Uncertainty Sets 11

2-2-2 Convexity in Robust Control

Towards exact and tractably solving (2-1.2) one might hope that � is convex? So, as a
seemingly natural next question, one may wonder how these individual segments look like,
and in particular, whether a set of stabilizable pairs with a common stabilizing feedback is
necessarily convex in Rn×n × Rn×m. The following example provides a negative answer to
this question.

Example 2-2.3 (Non-convex segment). Consider for a = 2 and d = 0.5 the matrices

A1 =

d 0 a
0 d 0
0 0 d

 , A2 = A>1 , B =

0
1
0


Then (A1, B) and (A2, B) are both stabilizable, perhaps by K = d2B>, while for A = 0.5A1 +
0.5A2 the pair (A,B) is not stabilizable. Moreover, since one can easily find a path from
(A1, B) to (A2, B) which can be stabilized by K, there does exist some non-convex segment
containing both of the pairs.

These quick examples indicate that convex uncertainty sets for (A,B) in Rn×n×Rn×m can be
a restrictive point of view indeed and may be potentially conservative. To be clear on what
is meant, consider Figure 2-2. There are two viewpoints; (a) convexifying: the uncertainty
set � is like X1 non-convex, which is natural from a system-theoretic point of view, while the
robust framework only allows for convex sets, hence, an outer approximation (Co) comes into
place. Secondly, (b) non-convex domain of LQR: say the uncertainty set � originates from
statistics and is actually convex like Ci in (b). Now, feasibility might be only asserted for
small − inscribed − sets like Ci instead of for example X2. Of course, in (a), this larger set
C0 must itself be feasible again, which is indeed not easily satisfied due to the non-convex
nature of the LQR domain in (A,B), i.e., Co must be again some inscribed set, like Ci, in
some possibly non-convex set X2.

Figure 2-2: Convex out- and inscribed uncertainty sets.

See section 3-3-1 for a further discussion on the conservativeness of ellipsoids, specifically, or
see Figure 3.7 in [BPT12] for a full and explicit example. Now, note that we do not claim that
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12 The Robust Linear Quadratic Regulator Problem

non-convexity is desirable, but merely observe that it should not be ruled out for element-wise
uncertainties in the pair (A,B). This last part is important, since using functional multiplier
theory [Lue69], the LQR problem can be posed as a convex optimization problem, yet in
`∞2 , not Rm×n. One can even formulate the LQR problem as an infinite-dimensional LP
[HLL96, Bar02]. Of course, the pitfall is that although the lifting made the problem convex,
we will lose exactness, and usually tractability, when trying to solve the problem in these
settings.

Therefore, we keep working in the more computationally friendly domain Rn×n×Rn×m. Even
there, one might say that the ‖·‖2-norm is related to stability, and indeed is a convex function.
This is true, but rather a crude approximation since ρ(A) ≤ ‖A‖2 ∀A ∈ Rn×n. For example,
take

A+BK =
(
a b
0 0

)
, a ∈ (−1, 1), b ∈ R.

Then we always have ρ(A+BK) < 1 while to make ‖A+BK‖2 < 1 we need a <
√

1− b2. This
implies that the operator-norm approach to stability can be rather conservative. Nevertheless,
one might need to consider a trade-off here since these norm-balls are the prevelant uncertainty
set in non-asymptotic system identification, see [MT19] for a review.

Similarly, for some given D,E, we often see uncertainty sets of the form: {∆A : ∆A = DFE}
for {F : F>F � I}, or {F : ‖F‖ ≤ 1}, which are both convex3. These kind of sets usually
appear out of academic interest, or as put in [Gev05] , they are God-given, being “easy” to
solve over (see chapter 3).

Another form one often encounters, which is especially simple in continuous-time, relates to
Lyapunov equations (in linear control). If we can find a P � 0 such that A>i P+AiP ≺ 0 ∀i ∈ I
then any A in the convex polytope with vertices {Ai}i∈I is Hurwitz. However, existence of
such a P , given some set of vertices is not straight-forward, in part due to the non-convexity
of the set of stable (Hurwitz) matrices, i.e., the polytope might be too big.

In conclusion, convexity does not naturally appear in our system-theoretic setting, it is rather
imposed towards a tractable algorithm. So, should we consider non-convex optimization
instead? To answer this question, let us simply quote Maryam Fazel4: “A lot of problems
that arise in Machine Learning are not convex. So people nowadays are talking a lot about
non-convex optimization but the problem is, saying something is non convex, is not saying
anything about it”. Unfortunately, her remark might be underappreciated. We will adhere to
her comment and indeed look for more structure.

3The norm-case is easy to see, for first case, write F =
∑

i
xiFi, for Fi being a basis element of F . Then,

using Schur complements, F>F � I is equivalent to(
I

∑
i
xiF

>
i∑

i
xiFi I

)
� 0.

This LMI shows convexity of the uncertainty set (cf. [BGFB94]).
4https://www.youtube.com/watch?v=uyZOcUDhIbY
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2-2 Meaningful Uncertainty Sets 13

2-2-3 Semi-Algebraic Sets in Robust Control

In (2-1.2) we let (A,B) be unknown, but towards a practically relevant optimization problem
we do make a few structural assumptions. We assume that we know the dimensions n and m,
but also that at least there exists a linear controller which can

√
α-stabilize the pair (A,B). In

other words, we assume that (
√
αA,B) is stabilizable. Looking back at (2-1.2), when 0 ∈ �,

which is usually the case, then a natural implication is that (
√
αÂ, B̂) must be stabilizable

as well. Therefore, it is informative to study the space of stabilizable pairs (A,B), or subsets
of it, since we might optimize over this space and not simply some product of R.

The space of controllable pairs (A,B) is, under the standard topology, dense in Rn×n×Rn×m.
To someone not familiar with control this may seem as if controllability is almost surely
satisfied. Of course, the catch is that, say you have no input, then yes, you are arbitrary close
to a controllable model, but you remain stuck without any input. It does not magically (nor
statistically) appear. Thus, this denseness remark is not the most informative. Instead we
state a classical result from [HM77], which hinges on the polynomial nature of the determinant.

Lemma 2-2.4 (Theorem 4.4 [HM77]). The set C = {(A,B) : A is not cyclic or (A,B)
is not controllable} is Zariski closed.

Without going into too much details, let pj(x) be a polynomial, then a set X is Zariski closed
when it can be written as X =

⋃n
i=1 Si, Si = {x ∈ Cn : pj(x) = 0, j ∈ J}, i.e., if it is a

finite union of algebraic sets.

Now, consider a linear discrete-time dynamical system xk+1 = (Â + ∆A)xk + (B̂ + ∆B)uk,
where both ∆A and ∆B are unknown. The state of the art identification schemes can give
probabilistic norm bounds of the form P{‖∆A‖p ≤ ε} ≥ 1 − δ. To control our unknown
dynamical system we would like to find a controller which can handle all of these potential
uncertainties, i.e., find a robust controller. There is of course a constraint, such a robust
control law exists only if (Â+ ∆A, B̂ + ∆B) is stabilizable for all (∆A,∆B). However, recall,
that even then, the set of uncertainties might be too big for 1 controller to stabilize all the
perturbations. Thus, we need stabilizability and a sufficiently small ball. Let B denote some
ball around (Â, B̂), then an object of interest is Σ(min)

n,m
⋂
B, which is a semi-algebraic set.

Identification schemes give us the balls and we keep what is relevant.

Going from non-convex optimization to optimization over semi-algebraic sets might not seem
like any improvement, since the field is still broad, but at least we have some structure and
thereby a clear set of tools. This is especially interesting since this toolbox is only becoming
larger [Las09, BPT12], also with respect to our purposes [HLS09].

2-2-4 Structure Preserving Worst-case Models

Most, if not all, robust optimal control laws are derived from optimization programs of the
form

(u?,m?) = arg inf
u∈U

sup
m∈M

c(u,m) (2-2.1)

where u? is the optimal input, m? the worst-case model and c some real-valued cost function.
When is the solution to (2-2.1) meaningful? Of course, when m should represent some model,
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14 The Robust Linear Quadratic Regulator Problem

say for a walking robot, then m? should not be a model for an airplane. Differently put, the
previous sections discussed � mostly from an abstract point of view, but it should not be
forgotten that in practice, this set is coming from somewhere.
One way to makeM somewhat realistic is to constrain parameters to their physically possible
limits, e.g., strictly positive inertias in mechanical systems like in (3-4.24). For a lot of systems
we do however have not such a clear parametric description. Then, one approach to constrain
M, which is borderline philosophical, is to let M only contain models being topologically
equivalent5 to the real system. This approach puts more emphasis on the behaviour instead
of the parametrization. We have to see if this is however computationally attractive as well. To
give a short example, parametrize a scalar system by a ∈ R, denoted σ(a) : {xk+1 = axk. Now
define two seemingly similar sets: σ+ := {σ(a) : a ∈ (0, 1)}, σ− := {σ(a) : a ∈ (−1, 0)}.
Pick any σ1 ∈ σ+, σ2 ∈ σ−, then σ1 and σ2 are not topologically equivalent, one can think of
a damper and a spring. The latter keeps flipping the state from one side of 0 to the other (see
Figure 2-3). Since homeomorphims ϕ of the real-line are (strictly) monotone, we can not even

Figure 2-3: Given the systems σ1 and σ2 we show typical behaviour decipted by the curves c1
and c2 respectively.

find a homeomorphim between any of the systems trajectories of σ1 and σ2. The point is that
these systems are therefore inherently different, it is not a matter of our arbitrary choice of
coordinates. However, all systems within either σ+ or σ− are topologically equivalent, they
capture the same qualitative behaviour.

2-2-5 In Conclusion, A Trade-off

In conclusion, we see that for problem 2-1.2 uniqueness and especially existence of a robust
controller is largely an open problem. Moreover, we know that convex � are unlikely to
naturally appear in a system theoretic context. However, they do appear often in a statistical
context, allowing for immediate finite-sample guarantees, which as mentioned before, will be
inherently conservative. At last, we like to remark that the nominal-, real- and worst-case
model should have some structural properties in common for the framework to make sense,
which constrains potential �.
In the next chapter we set out to see if there is structurally nice semi-algebraic uncertainty
set � to exploit in order to alleviate predominant conservatism in robust control, possibly at
the cost of more involved concentration inequalities.

5One can think of a (possibly non-linear) generalization of a similarity transform, see section B-2 for an
introduction and section 3-3 for a further discussion.
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Chapter 3

Game Theoretic Robust Control

The previous chapter introduced our search for structurally nice (semi-algebraic) uncertainty
sets. It is hypothesized that since dynamic LQ games can be efficiently solved plus interpreted
as robust control problems they might embody precisely what we are looking for.

Hence, this chapter is centered around quantifying the robustness resulting from a dynamic
game with quadratic cost1. Early accounts of this idea can be found in for example the mono-
graph by Whittle [Whi90, p.90], where the remark is made, in his notation, that extremizing
a risk-sensitive optimal control cost function of the form S = C + θ−1D can be interpreted
as extremizing C subject to D ≤ d for some d. Which then can be understood as another
constrained optimal control problem indeed.

There is a large body of work in this direction, especially the contribution by one of its
pioneers, Ian Petersen, is very close to our approach. It can be argued that this line of
work started in the continuous-time with [PH86, Pet87], where a constructive, yet heuristic
algorithm was proposed to find a stabilizing controller when one has an uncertain system
matrix of the form

(
A+DF (t)E

)
, F (t)>F (t) � I.

A few years later the celebrated paper [KPZ90] gave necessary and sufficient conditions for the
continuous-time system ẋ(t) = (A+∆A(t))x(t)+(B+∆B(t))u(t), (∆A ∆B) = DF (t)(E1 E2),
‖F (t)‖ ≤ 1 to be quadratically stabilizable, plus they further clarified the link with H∞-
control. This result was later generalized to the discrete-time case in [GBA94]. Although
these results are more than 20 years old, describing parametric uncertainties in the pair
(A,B) via some matrix-norm-balls is still the prevalent method, although currently driven by
measure concentration results, e.g., see [AL18, SMT+18].

In the stochastic case, distributional uncertainties in the form of relative entropy constraints
are considered, see the monographs [HS07, RPUS00].

Although these problems are well understood, the catch is that usually the set defined by
D ≤ d (in the notation of Whittle) depends on the the extremizing parameters. Therefore it

1Or equivalently a linear Gaussian optimal control problem with quadratic cost, identity covariance and
exponential utility function, i.e. LEQR [Jac73]
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16 Game Theoretic Robust Control

is not clear a priori, over which set the robust control problem is solved, this is effectively
only known a posteriori. Moreover, again in the notation of Whittle, most results are not
constructive, only showing existence of pairs (θ, d) or rely on heuristics. Furthermore, most
authors do not consider the full set defined by D ≤ d, but generally some “inscribed ball”. See
for example [RPUS00, ch.10], which gives a simple example of how to go about fitting these
kind of ellipsoids to data. What is not clear, is why, from a system theoretic point of view,
this should be an ellipsoid in the first place?

Motivated by renewed interest in tractable reformulations of robust LQR problems (cf. [AYS11,
DMM+17, US18, CKM19, Tu19]), we investigate which lessons can be drawn from the readily
available dynamic game theory, with emphasis on structural properties like in the recent work
[FGKM18, MR18, MRJS19].

We start by introducing a new uncertainty set.

3-1 Introduction of a New Uncertainty Set

Recall the uncertainties as specified in (2-1.2) and assume B to be known. For now, think of
Â as some nominal closed-loop system, then the key definition of this work is the following
set:

Definition 3-1.1 (A new confidence and uncertainty set). Given a tuple (Â,D,Σ0,Σv, α) and
some γ ∈ R≥0 define a set of models around Â by the confidence set:

Aγ(Â) :=

A ∈ Rn×n :

A = Â+D∆A

Σx = αAΣxA
> + Σ0 + α(1− α)−1Σv, Σx � 0〈

∆>A∆A,Σx

〉
≤ γ

 . (3-1.1)

Key in the definition of Aγ(Â) are the uncertainties ∆A. Since this uncertainty set will
appear again later, it has its own notation: �γ, defined by Aγ(Â) = Â+D�γ(Â)2.

Some readers might recognize a set reminiscent of the uncertainty in [AYS11], more on that in
Section 3-3-1. In the remainder of the text we will occasionally takeW := Σ0+α(1−α)−1Σv �
0. We could relax this and only demand Σx � 0, but then part of our uncertainty set can
be unbounded, corresponding to the part of state-space which is never excited. This is of
course not insightful at all. Therefore, we avoid these pathological examples3. Moreover, it is
important to realize that Σx in (3-1.1) is not a constant, indeed some authors would rather
write Σx = dlyap(

√
αA,W ) to highlight the explicit dependence.

Remark 3-1.2 (Ball structure). Let Br(x) be an Euclidean ball with radius r and center x.
Then one can think of Aγ(Â) as a ball with radius γ and center Â. However, in contrast
to an Euclidean ball, our set is not translation invariant, but depends on the center Â as
visualized in Figure 3-1.

2Where + is now overloaded and refers to the Minkowski sum: A+B = {a+ b : a ∈ A, b ∈ B}.
3To illustrate this remark, take α ∈ (0, 1), A = 02×2, Σ0 = Σv = DD> for D> =

(
1 0

)
such that

∆A =
(
a b

)
for some scalars a and b. The parameter b is clearly unbounded, but totally useless since the

second state is identically 0.

Wouter Jongeneel Master of Science Thesis



3-2 Solving a Robust LQR Problem 17

Moreover, let Σ0 + α(1− α)−1Σv � 0. Then for ∆A to be in �γ(Â) is the same as being part
of the metric ball {∆A ∈ Rd×n : ‖∆>A‖2F,Σx ≤ γ} for Σx as in (3-1.1). This further explains
why γ is referred to as a “radius”.

Figure 3-1: The set (3-1.1) can be interpreted as some ball around Â(i). However, for a fixed γ
the shape of Aγ(Â(i)) depends on its center Â(i).

Remark 3-1.3 (Structural information). The matrix D in Definition 3-1.1 may be used to in-
corporate a special form of prior structural information into the uncertainty set. For instance,
when it is known that all entries of a particular column of A, say the jth column [A]j, are
subject to the same level of uncertainty, one can choose [D]j = 1n×1. On the other hand,
without any prior structural information, one should choose D = In.

To gain a better visual understanding of our uncertainty set, we do a quick example:

Example 3-1.4 (2D Aγ). Let the problem parameters be given by

Â =
(

0.8 0.5
0 0.8

)
, D =

(
1
1

)
, Σ0 + α(1− α)−1Σv = I2

and α = 0.9. In Figure (3-2a) we show �γ(Â) for several γ ∈ R>0. It is observed that we
have �γ ⊆ {∆ ∈ R1×2 : ‖∆>‖2F,W ≤ γ} since Σx � W . Then if γ is finite, W � 0 =⇒ �γ
is contained in a compact set. For γ = 1 such a ball is also included in Figure (3-2a).
Furthermore, we can plot for Q = I2 the cost J (Â + D∆A, Q) ∀∆A ∈ �γ(Â) as is done in
Figure (3-2b).

Given the family of confidence sets as in Definition 3-1.1. Then, under Assumption 2-1.1
one can deploy the shorthand notation of Definition 2-1.2 and equivalently describe a RLQR
problem (2-1.2) with an uncertain A, yet known B, through the static minimax optimization
program

inf
K∈Rn×m

sup
Ac`∈Aγ(Â+BK)

J (Ac`, Q+K>RK), (3-1.2)

which is our starting point. It is worth noting that the inner maximization step depends on
K and that problem (3-1.2) is well-defined for all γ ∈ R≥0. In section 3-2-1 we elaborate on
how the framework can be extended to deal with uncertainties in B as well.

3-2 Solving a Robust LQR Problem

The main objective of this section is to provide a closed-form solution to the RLQR prob-
lem (3-1.2) and study its implications. In particular, we show that (3-1.2) can be interpreted
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18 Game Theoretic Robust Control

(a) Uncertainty set from Example 3-1.4 (b) LQ cost J over �γ(Âc`)

Figure 3-2: Given the parameters from Example (3-1.4) in (a) we show �γ(Â) for several
γ ∈ [20, 214]. See that we converge to this particular triangular shape. The plot also includes the
outerball {∆A : ‖∆>A‖2F,W ≤ γ = 1} as visualized by the dashed line. Then in (b) we show
the quadratic cost over �γ(Â) for γ = 214. Observe that the cost grows sharply towards the
boundary of �γ(Â).

as the constrained optimal control version of a dynamic game. To reach to this end, a first
step entails evaluating the worst-case LQ cost, i.e., the inner maximization in (3-1.2) for a
given controller K. Before targeting this objective, inspired by Lemma 2 from [FGKM18], we
provide some insights about the uncertainty set �γ , which are especially interesting from an
optimization point of view

Proposition 3-2.1. The set �γ(Â) as defined in Definition 3-1.1 has the following properties:

(i) For n ≥ 3 there are sets �γ(Â) which are non-convex.

(ii) For γ > 0, the set �γ(Â) is semi-algebraic, thereby a disjoint union of a finite number
of connected semi-algebraic sets4.

The fact that our uncertainty set is semi-algebraic and does not rule out the lack of convexity
is nice from a control theoretic point of view (see section 2-2-3). Moreover, the semi-algebraic
nature of the set implies that ∂�γ is smooth almost everywhere.
The proof of Proposition 3-2.1 is split up in two parts.

Proof of Proposition 3-2.1 (i). Let Âc` , Â+ B̂K ∈ R3×3 and ∆Ac` ∈ R3×3 be parametrized
by α ∈ (0, 1) and the finite scalars (a, b, c, d) with d ∈ (−1, 1):

Âc` = 1√
α

d 0 0
0 d 0
0 0 d

 , ∆Ac` = 1√
α

0 0 a
b 0 c
0 0 0

 .
By construction all these Âc` + ∆Ac` ’s are

√
α-stable. Say we want ∆Ac` and ∆>Ac`

to be
in some �γ(Âc`). Then for simplicity assume K = D = Σv = Σ0 = I3 such that we

4After extending the tools from [FGKM18] to the game theoretic regime, we can even show that the set is
path-connected, which is done in chapter 4, Corollary 4-3-1.
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3-2 Solving a Robust LQR Problem 19

only need to find a valid γ. By stability of both Âc` + ∆Ac` and Âc` + ∆>Ac`
, the ma-

trix Σx exists for all α ∈ (0, 1) such that we can always find a γ ∈ R being equal to
max{Tr(∆>Ac`

∆Ac`Σx,∆Ac`
),Tr(∆A∆>AΣx,∆>Ac`

)}. So ∆Ac` and ∆>Ac`
are members of some

�γ(Âc`). Now let ∆X := θ∆Ac` + (1− θ)∆>Ac`
, θ ∈ [0, 1]. Then for θ = 0.5 and a = b = c = 4,

d = 0.5 we have λ(Âc`+∆X) = α−1/2{−1.5,−1.5, 4.5} such that ∆X /∈ �γ(Âc`) since Σx /∈ Sn+.
This example can be generalized to higher dimensions. Since here we have ∆Ac` = ∆A + ∆B,
one can easily see that for example when B is known, the admissable uncertainties in A might
live in a non-convex set.

The set (3-1.1) has another interesting property indeed

Proof of Proposition 3-2.1 (ii). First, using the Kronecker product (⊗) we rewrite the expres-
sion for Aγ(Âc`). Let W := α(1 − α)−1Σv + Σ0 � 0, then the discrete Lyapunov equation
can be represented as vec(Σx) = (In2 −αAc`⊗Ac`)−1vec(W ). Secondly, for ∆Ac` ∈ Rd×n the
inner product becomes:

〈∆>A∆A,Σx〉 =Tr(∆>Ac`∆Ac`Σx) = Tr(∆Ac`Σx∆>Ac`)
=vec>(Id)vec(∆Ac`Σx∆>Ac`)
=vec>(Id)(∆Ac` ⊗∆Ac`)vec(Σx)
=vec>(Id)(∆Ac` ⊗∆Ac`)(In2 − αAc` ⊗Ac`)−1vec(W ).

Thus the algebraic equation for Σx can be omitted, but note, at this point we have lost the
stability constraint Σx � 0. For ease of notation let D = In, define Z := In2−α(Âc`+∆Ac`)⊗
(Âc` + ∆Ac`) and the mat(·) operator by X = mat

(
vec(X)

)
. Then for Y := mat

(
Z−1vec(W )

)
the set �γ(Âc`) ⊂ Rn×n can be written as{

∆Ac` :
0 ≤ vec>(In)(∆Ac` ⊗∆Ac`)Z

−1vec(W ) ≤ γ
0 < det(Yi), i = 1, . . . , n

}
(3-2.1)

for det(Yi) being the ith principal minor of Y . This additional strictly-positive determinant
constraint asserts selection of uncertainties leading to

√
α-stable Ac` by enforcing Z � 0,

see e.g. Theorem 7.2.5 in [HJ90]. Differently put, the principal minor constraints re-enforce
Σx � 0 again. Using Cramer’s rule, i.e. Z−1 = adj(Z)/det(Z), it can be observed that (3-2.1)
is indeed semi-algebraic for γ > 0, thus a set of polynomial inequalities in the elements of
∆Ac` of the form S:

S =
{

∆Ac` ∈ Rd×n : 0 ≤ p1(∆A), 0 ≤ γp2(∆A)− p1(∆A), 0 < pi(∆A), i = 3, . . . , 3 + n
}
.

This result is of course closely related to the prominent role played by polynomials in linear
control theory. The second part follows directly from the fact that Aγ is semi-algebraic and
Theorem 5.19 in [BPR16].

The potential lack of convexity can be exemplified. The idea behind this next example is the
fact that the line connecting two

√
α-stable matrices need not be necessarily

√
α-stable (cf.

Definition 2-1.3). So although Example 3-1.4 displays a convex set, this is not generally the
case.
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20 Game Theoretic Robust Control

(a) Uncertainty set �γ as in Definition 3-1.1. (b) LQ cost J as in Definition 2-1.2.

Figure 3-3: Given the parameters from Example 3-2.2 we show the uncertainty sets and LQ
function identified by (θ1, θ2) for different levels γ ∈

{
2−4, 21, 24, 214} from darker to lighter

gray.

Example 3-2.2 (Non-convexity, Proposition 3-2.1 (i)). We consider the case where the confi-
dence set Aγ ⊂ R3×3 from Definition 3-1.1 is constructed using the parameters α = 0.95,
D = Qc` = Σ0 = I3, and Σv = 0.01I3 where Qc` , Q + K>RK for some (Q,R,K). Here
we will consider several “levels sets” of �γ. Since the set �γ is essentially a 9-dimensional
object, for the sake of illustration we ought to restrict our attention to a 2-dimensional subset
of it. For this purpose, we consider the closed loop matrix Ac`, and especially all ∆A, to be
parametrized by

Ac` =

0.25 1.25 −0.84
0 0.25 0

0.70 1.25 0.25


︸ ︷︷ ︸

Â+BK

+

 0 0 ∆A13
0 0 0

∆A31 0 0


︸ ︷︷ ︸

∆A

,

where ∆A13 = 4.98θ1 − 0.25θ2, ∆A31 = 0.45θ2 − 1.08θ1, and the parameters5 (θ1, θ2) belong
to the interval [−1, 1]2. Figure 3-3a depicts the 2-dimensional slice of �γ by means of (θ1, θ2)
for the levels: γ ∈

{
2−4, 21, 24, 214}. Interestingly enough, it is non-convex for large values of

γ. Figure 3-3b also illustrates the LQ cost J in Definition 2-1.2 when (θ1, θ2) ∈ [−1, 1]2. It
is worth noting that the function J (Ac`, Qc`) takes +∞ when ∆A /∈

⋃
γ∈R≥0

�γ.

Since the proof of Proposition 3-2.1 (ii) is constructive we could do an explicit example
regarding the polynomial parametrization of �γ as well. The reason why we do not provide
a printed expression for such a parametrization is well-known: “a derivation of the uncertain
polynomial governing stability involves so much algebra that only a masochist would attempt
it by hand.” [Bar94, p.29].

In the next step, we tackle the worst-case LQ problem over Aγ , as the inner maximization of
the RLQR problem (3-1.2). This problem is defined as

sup
Ac`∈Aγ(Â)

J (Ac`, Qc`), (3-2.2)

5This choice of (θ1, θ2) over (∆A13,∆A31) is purely driven by visualization purposes.
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3-2 Solving a Robust LQR Problem 21

for some given Qc` � 0 (Q+K>RK) and
√
α-stable Âc` (Â+ BK). Denote the solution to

(3-2.2) by A?c`(γ) := Âc` +D∆?
A(γ).

Proposition 3-2.3 (Worst-case LQ cost). Consider the problem (3-2.2) with the
√
α-stable

nominal closed-loop system matrix Âc`, the structural information matrix D, some α ∈ (0, 1),
the initial data Σ0,Σv ∈ Sn++, and the closed-loop cost matrix Qc` ∈ Sn+. Given some δ ∈ R≥0,
let us assume that (δ−1Id − αD>SD) � 0 is satisfied for the symmetric (minimal) positive
semi-definite solution S to the algebraic equation

S =Qc` + αÂ>c`SÂc` + α2Â>c`SD(δ−1Id − αD>SD)−1D>SÂc`.

Then define
∆?
A(δ) = α(δ−1Id − αD>SD)−1D>SÂc`. (3-2.3)

We further define Σ̃x as the positive-definite solution to the Lyapunov equation

Σ̃x = α
(
Âc` +D∆?

A(δ)
)
Σ̃x
(
Âc` +D∆?

A(δ)
)> +W (3-2.4)

which in its turn defines the function

h̃(δ) =
〈(

∆?
A(δ)

)>∆?
A(δ), Σ̃x

〉
. (3-2.5)

Then, ∆?
A(γ) = ∆?

A(δ) and J ? =
〈
Σ̃x, Qc`

〉
are the optimizer (worst-case uncertainty) and

the optimal value of the problem (3-2.2) with the parameter γ = h̃(δ).

Proof of Lemma 3-2.3. Consider the problem

Pa(γ) : argmax
∆Ac`∈�γ(Âc`)

J (Âc` +D∆Ac` , Qc`),

If γ satisfies h(δ) = γ then from the Lemma A-0.1 the solution to Pa(γ) can be directly
retrieved from the (negated) problem

Pb(δ) :



argmin
∆Ac`∈R

d×n
E
x0,v

[ ∞∑
k=0

αk
(
δ−1w>k wk − x>k Qc`xk

)]
subject to xk+1 = Âc`xk +Dwk + vk,

vk
i.i.d.∼ P(0,Σv), x0 ∼ P(0,Σ0),

wk = ∆Ac`xk.

(3-2.6)

Under the conditions from Proposition 3-2.3 the program Pb(δ) can be solved using Dynamic
Programming, e.g. see chapter 3 from [Ber07], regarding feasibility one can always select
wk = 0 ∀k, moreover (δ−1Id − αD>SD) � 0 asserts boundedness of the cost from below.
Let the Value function (cost-to-go from state x, i.e., without taking the expectation over
x0), corresponding to (3-2.6), under a policy ν := {w0, w1, . . . } be parameterized by V ν(x) =
−x>Sx + q, S ∈ Sn+, q ∈ R. An expression for the optimal policy and value function follow
from the classical Bellman equation

V ν(x) = inf
ν

{
c(x,w) + αEx′∼P(·|x,ν(x))

[
V ν(x′)

]}
,
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which yields in the context of (3-2.6)

− x>Sx+ (1− α)q

= inf
w

{
δ−1w>Idw − x>Qc`x− αE

v

[
(Âc`x+Dw + v)>S(Âc`x+Dw + v)

] }
= inf

w

{(
x
w

)> [(
−Qc` 0

0 δ−1Id

)
− α

(
Â>c`SÂc` Â>c`SD

D>SÂc` D>SD

)](
x
w

)
− αTr(SΣv)

}
= x>

(
−Qc` − αÂ>c`SÂc` − α2Â>c`SD(δ−1Id − αD>SD)−1D>SÂc`

)
x− αTr(SΣv),

if (δ−1Id − αD>SD) � 0 indeed. Thus, the optimal policy is

w?k = α(δ−1Id − αD>SD)−1D>SÂc`xk,

where

S =Qc` + αÂ>c`SÂc` + α2Â>c`SD(δ−1Id − αD>SD)−1D>SÂc`,

resembles the corresponding Riccati equation. This directly gives the expression for ∆?
Ac`

(δ)
and concludes the proof.

Now we are at the stage to present one of the main results.

Theorem 3-2.4 (RLQR solution under Aγ (see Definition 3-1.1)). Consider the RLQR prob-
lem (3-1.2) with the nominal

√
α-stabilizable model (Â, B), the structural information matrix

D, α ∈ (0, 1), the cost matrices Q � 0, R � 0 and the covariance matrices Σv,Σ0 ∈ Sn++.
Given the parameter δ ∈ R≥0, assume that the algebraic equation

P = Q+ αÂ>PΛ−1Â, Λ := In + α
(
BR−1B> − δDD>

)
P.

in P admits a symmetric minimal6 positive semi-definite solution denoted P (δ) and define
Λ(δ) correspondingly. Furthermore, define

∆?
A(δ) = αδD>P (δ)

(
Λ(δ)

)−1
Â. (3-2.7)

Consider the expressions for Σ̃x and h̃(δ) as in (3-2.4) and (3-2.5) respectively, which are
now functions of K as well, to emphasize the difference, the tildes are dropped, i.e., define:

Σx = α
(
Â+D∆?

A(δ) +BK?(γ)
)
Σx
(
Â+D∆?

A(δ) +BK?(γ)
)> +W (3-2.8)

h(δ) =
〈(

∆?
A(δ)

)>∆?
A(δ),Σx

〉
. (3-2.9)

Then, for γ = h(δ),

(i) The controller uk = K?(γ)xk defined by

K?(γ) = −αR−1B>P (δ)
(
Λ(δ)

)−1
Â (3-2.10)

is (the minimizing part of) the solution to the RLQR problem.
6See Lemma 3-2.9 for the definition and more information.
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(ii) Furthermore, the matrix ∆?
A(δ) in (3-2.7) is the worst-case7 model uncertainty, i.e., the

maximizing solution is A?c`(γ) = Â+BK?(γ) +D∆?
A(δ), in other words, the worst-case

system matrix is given by A?(γ) = Â+D∆?
A(δ).

(iii) Moreover,

(a) the map h(δ) is non-decreasing over some interval [0, δ) ⊂ R≥0 for δ <∞

(b) the map h(δ) is (real) analytic on the interval [0, δ).

See section 3-2-2 for a game theoretic interpretation of this “breakdown point” δ, which
contains an intuitive and formal proof of the theorem as well. Note that we have chosen
to interpret (3-2.7) as an additive uncertainty, but by construction, we could have inter-
preted the adversarial disturbance as an multiplicative uncertainty as well, e.g., A?(γ) =[
In + αδD>P (δ)

(
Λ(δ)

)−1]
Â = ∆ · Â. The implications of this observation are discussed in

section 3-3.

In principle, one could use Theorem 3-2.4 to solve certain8 Robust LQ regulator problems.
However, in the spirit of [HS07] and references therein, like the famous Lucas Critique [Luc76],
one could use the proposed game theoretic formulation also for model analysis. If society acts
adversarially, how does it react to a policy change?

It is important to remark that although problem (3-1.2) is well-defined for all γ ∈ R≥0,
Theorem 3-2.4 does not simply hold for any γ ∈ R≥0 but rather for some range [0, γ) ⊆ R≥0
where h(δ) = γ. We do not necessarily have limδ↑δ h(δ) =∞. This also explains the implicit
formulation of the Theorem. We elaborate on this in section 3-4-2-2.

We make another remark.

Remark 3-2.5 (Nested sets). It can be observed from definition 3-1.1 that for a fixed Â and
γ1 ≤ γ2 ≤ · · · ≤ γn we have Aγ1(Â) ⊆ Aγ2(Â) ⊆ . . .Aγn(Â).

The (local) continuity of the map h allows for showing that the nestedness is actually invariant
under feedback.

Lemma 3-2.6 (Controlled uncertainty sets are nested). Let γ1 correspond be feasible in the
sense of Theorem 3-2.4. Then there exists a γ2 ≥ γ1 such that �γ1

(
Â+ B̂K?(γ1)

)
⊆ �γ2

(
Â+

B̂K?(γ2)
)
.

So if one can solve Theorem 3-2.4 for some γ1 and γ2 satisfying γ1 ≤ γ2, then the controller
under γ2 works (

√
α-stabilizes) for both uncertainty sets, see for example Figure 3-4a. This

also means that given some uncertainty set ∆, if it can be shown that ∆ ⊆ �γ , it is known
there exists a single K which can

√
α-stabilize the entire set ∆. This should be contrasted

with standard norm-balls on (∆A,∆B) for which it is not immediately clear if there is a K
which can handle the full set.

7In remark 3-2.10 we affirmatively answer the question if this worst-case model is actually a least-favourable
model.

8Of course, we still have to see if this set is actually structurally appealing.
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24 Game Theoretic Robust Control

Proof of Lemma 3-2.6. Let f(∆Ac` , δ) be a real-valued function over a subset of Rd×n ×R≥0
defined by

f(∆Ac` , δ) :=


〈∆>Ac`∆Ac` ,Σx〉,

subject to Σx = Ac`ΣxA
>
c` +W, Σx � 0,

Ac` = Â+ B̂K?(δ) +D∆Ac` .

By the continuity result from Theorem 3-2.4.(iiib) the levelsets of f cannot intersect. Then
map δ 7→ h(δ) =: γ and project that coordinate on the space of ∆Ac` , which by monotonicity
of h preserves the lack of intersecting sets. Then due to the game theoretic interpretation we
have ∆?

Ac`
(γ1) ∈ ∂�γ1 and for γ2 ≥ γ1, ∆?

Ac`
(γ2) ∈ ∂�γ2 but ∆?

Ac`
(γ2) /∈ Int(�γ1) such that by

continuity of ∆?
A in γ the sets must be nested.

(a) Sets of �γ . (b) Function f(δ) (see below).

Figure 3-4: Given the parameters from Section 3-4-3, we show in Figure 3-4a that for a small
range of γ’s (in fact δ ∈ [1.5, 3.5] ·10−5), the sets �γ

(
Â+BK?(γ)

)
are indeed nested. Although

these sets appear to be ellipsoidal, in Figure 3-4b we show, using game-theoretic notation, f(δ) :=
‖L?(δ)‖2F,Σx(L?(δ)) − ‖L

?(δ)‖2F,Σx(−L?(δ)). Since f(δ) is strictly positive, the level-sets cannot
contain L? and −L?, and thus are not ellipsoidal. More on this in Section 3-3-1.

.

3-2-1 Uncertainty in the Pair (A,B)

Proposition 3-2.3 and Theorem 3-2.4 are concerned with an uncertainty in the system matrix
A. In this section we will show to what extend we can handle uncertainties in B as well,
thereby continuing where [JSM19] left off.
Let us be given some controller K

√
α-stabilizing Âc` := Â + B̂K and Qc` := Q + K>RK,

being the closed-loop cost matrix. Then consider the problem

sup
Ac`∈Aγ(Âc`)

J (Ac`, Qc`), (3-2.11)

Denote the solution to (3-2.2) by A?c`(γ) := Âc` + D∆?
Ac`

(γ). Now we can directly apply
Proposition 3-2.3 and obtain the next Corollary to it.
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Corollary 3-2.7 (Decomposition of ∆?
Ac`

(γ)). If (3-2.11) is feasible and h̃(δ) = γ, then some
worst case uncertainties ∆?

A(γ) and ∆?
B(γ) are given by

∆?
A(γ) = α(δ−1Id − αD>SD)−1D>SÂ

∆?
B(γ) = α(δ−1Id − αD>SD)−1D>SB̂.

This follows directly from (3-2.3) and Âc` = Â+ B̂K and ∆Ac` , ∆A + ∆BK, but note, this
decomposition is not unique.

Under the observation from Corollary 3-2.7 we can write the worst-case closed-loop system
as (In +D∆?)(Â+ B̂K) for ∆? := α(δ−1Id − αD>SD)−1D>S which is indeed very much in
line with equation (36) from [YUP02], although for the infinite-horizon case. The same idea
holds for Theorem 3-2.4, consider the problem

inf
K∈Rn×m

sup
Ac`∈Aγ(Â+B̂K)

J (Ac`, Q+K>RK). (3-2.12)

Assume that (3-2.12) is feasible in the sense of Theorem 3-2.4. Then the worst-case model
uncertainty, i.e., the maximizing solution to RLQR is A?c`(γ) = Â+ B̂K?(γ) +D∆?

Ac`
(δ). It

turns out that the decomposition of Corollary 3-2.7 carries through:

Lemma 3-2.8 (Decomposition of minimax ∆?
A(δ)). The worst-case uncertainty ∆?

A(δ) can be
decomposed as ∆?

Ac`
(δ) = ∆?

A(γ) + ∆?
B(γ)K?(γ) for

∆?
A(γ) = α

(
δ−1Id − αD>P (δ)D

)−1
D>P (δ)Â,

∆?
B(γ) = α

(
δ−1Id − αD>P (δ)D

)−1
D>P (δ)B̂.

(3-2.13)

Proof of Lemma 3-2.8. This follows directly from Theorem 3-2.4 whereas the decomposition
follows from any standard proof of Lemma 3-2.9, e.g., solving the first step in the correspond-
ing Bellman-Isaacs equation (cf. [BB95]).

Using Lemma 3-3.3.(iv) and 3-4.4 from below, we clearly see the “growing” effect of δ, and
by monotonicity in h, of γ. Indeed, γ functions as a radius.

3-2-1-1 The Uncertainty Set for (A,B)

Corollary 3-2.7 and Lemma 3-2.8 describe how we can easily decompose closed-loop models
and obtain worst-case uncertainties for both the system- and input matrix. The crux is that
one can think of D∆Ac` as a perturbation to the nominal system matrix Â, due to having the
same dimension, or as sum of perturbations to Â and B̂, e.g. via D∆Ac` = D(∆A + ∆BK).
Of course, one could take ∆A ← ∆A + (1 − θ)∆BK, ∆B ← θ∆B, for any θ ∈ [0, 1]. This
interpretation is taken in Example 3-2.2 for θ = 0, effectively making ∆Ac` , ∆A. In a
special case we also consider some uncertainty only in B. If ∃ ∆B 6= 0 : ∆BK

? = L? we can
define an uncertainty set similar to (3-1.1) since the worst-case closed-loop dynamics become
A+ (B̂ +D∆B)K. For example, let D = B̂, then it follows directly from the expressions for
K?, L? that ∆?

B = −δR. Note however that this construction is usually not possible since
commonly m < n, while D = In and L is not rank-deficient. Nevertheless, in section 4-3-3 we
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have a similar discussion on the simple relation between K? and L? in the context of policy
gradient.

Using this decomposition idea, we observe something extra, which we briefly highlight fol-
lowing [Pol87]. Consider for Q � 0, R � 0 the usual discounted LQ problem and let without
loss of generality the optimal control gain be K(A,B). Here (A,B) is the real, yet unknown
system, which we approximate with (Â, B̂). Let C be defined by C>C = Q and define the
sets

EC = {(A,B) ∈ Rn×n × Rn×m : (
√
αA,B,C) minimal realization},

G = {(Â, B̂) ∈ EC : Â+ B̂K(Â, B̂) = A+BK(Â, B̂)}.

So, G is the set of system matrices such that the estimated closed-loop system matrix equals
the real closed-loop system matrix. Then the decomposition for ∆Ac` implies that on G we
have ∆A + ∆BK(Â, B̂) = 0. This lower dimensional manifold (think of a hyperplane) is
of special interest in the study of self-tuning regulators, but for us it is simply the set of
uncertainties we can deal with for free. A final remark on this decomposition is that since we
parametrize a dn-dimensional object with d(n+m) parameters, we lose compactness (recall
the discussion corresponding to for example the set in Figure 3-2 and see Figure 3-14b for an
example set of (a, b).).

Moreover, instead of decomposing the solution of Theorem 3-2.4, we could also introduce an
uncertainty set for the pair (A,B) directly. Let this set be defined as

Uγ
(
(Â, B̂);K

)
=
{

(A,B) ∈ Rn×n × Rn×m : A+BK ∈ Aγ(Â+ B̂K)
}
. (3-2.14)

Then a solution to

inf
K∈Rm×n

sup
(A,B)∈Uγ

(
(Â,B̂);K

)J (A+BK,Q+K>RK) (3-2.15)

is given by (3-2.10) and (3-2.13). Of course, this description is rather implicit, but it gener-
alizes all the (arbitrary) decompositions from above.

3-2-1-2 Other Methods to Incorporate B

At last, we highlight another approach to include uncertainties in B without arbitrary de-
compositions. This approach, as taken in [GBA94], hinges on extending the state space as
proposed in [Bar83]. Consider a deterministic dynamical system xk+1 = Axk+Buk and write
it in the extended form xek+1 = Aexek +Beuek given by:(

xk+1
uk+1

)
=
(
A B
0 0

)(
xk
uk

)
+
(

0
Im

)
uek.

Now we can appeal to Theorem 3-2.4 with an uncertainty just in Ae, since this block includes
uncertainties in both A and B.

To see why this approach is not preferred, let Qe = diag(Q,R) and Re = εIm � 0 for some
ε > 0. Assume that the extended system allows for finding the optimal control gain for limε→0
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and let the solution be denoted Ke such that uek := Kexek. Back to the original problem, let
uk := Kxk for some K. Then from uk+1 = Ke

xxk + Ke
uuk and uk+1 = KAxk + KBuk we

find K = KxA
−1 as the solution to the original problem. Although the idea is elegant, this

approach has obvious practical obstructions, for example demanding the system matrices to
be non-singular.

3-2-2 Game Theoretic Interpretation

In this section the main results are briefly explained via a introduction to dynamic game
theory. It should be highlighted that the link between dynamic game theory and robust
control is well studied, see [BB95, HS07] for an accessible and illuminating introduction.

We first introduce the concept of a dynamic game (cf. [BB95, BO99]). Consider the stochastic
(discounted) two-player zero-sum dynamic game

inf
{µk}k∈N

sup
{νk}k∈N

E
x0,v

[ ∞∑
k=0

αk
(
x>k Qxk + u>k Ruk − δ−1w>k wk

)]
,

s.t. xk+1 = Axk +Buk +Dwk + vk,

vk
i.i.d.∼ P(0,Σv), x0 ∼ P(0,Σ0),

uk = µk(xk), wk = νk(xk).

(3-2.16)

The µ-player selects a policy µk for the input uk and the ν-player selects a policy νk for the
input wk. Here the parameter δ ∈ R≥0 penalizes the input of the ν-player, which reduces
its ability to destabilize the system, and D ∈ Rn×d determines how the state dynamics are
affected by the input of this ν-player. Note that this game is “diagonal"9 in the sense that
there are no cross-terms in the cost, thus the program largely relies on the single parameter
δ. This parameter is constrained to live in the interval [0, δ), where δ is referred to as the
breakdown point, beyond this value, the ν-player has to pay so little that the cost becomes
unbounded10.

To see a relationship between dynamic game theory and parametric uncertainty sets, suppose
(3-2.16) has a solution and consider the following. The ν-policy aims to maximize the cost.
But since the optimal µ-policy can handle this worst-case policy, it must also be able to
handle policies of a less powerful adversary. This effectively gives rise to a whole family of
state feedback policies the µ-player can handle. It turns out that in (3-1.2) we maximize over
precisely this family.

To be a bit more formal we need one key Lemma:

Lemma 3-2.9 (cf. chapter 3 from [BB95] for the non-discounted deterministic case). Given
a game (3-2.16) for α ∈ (0, 1), let Q � 0, R � 0, (

√
αA,B) be stabilizable and (

√
αA,C)

detectable for Q = C>C. If δ ∈ R≥0 satisfies (δ−1Id − αD>PD) � 011, where P is the sym-
9This form is chosen to keep the exposition simple, but one can consider more involved adversarial terms,

e.g., w>k Swk for some S � 0.
10See ch.8 [HS07] for more on the relation between this breakdown point and H∞ control. Also, see section 3-

4-2-2 for explicit examples of what can happen at δ.
11An equivalent condition as promoted by [HS07] is to check logdet(δ−1Id − αD>PD) > −∞
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28 Game Theoretic Robust Control

metric minimal12 positive semi-definite solution to the Generalized Algebraic Riccati Equation
(GARE):

P =Q+ αA>PΛ−1A, Λ =
(
In + α

(
BR−1B> − δDD>

)
P
)
, (3-2.17)

then the optimal13 strategies are time-invariant, linear in xk for K?(δ) ∈ Rm×n and L?(δ) ∈
Rd×n given by

ν?k(xk) = αδD>PΛ−1Axk = L?(δ)xk,
µ?k(xk) = −αR−1B>PΛ−1Axk = K?(δ)xk.

Moreover, under these strategies the closed-loop system (Λ−1A) is
√
α-stable and the optimal

cost is given by J ? = 〈P,Σ0〉+ α(1− α)−1〈P,Σv〉.

To indicate why this might be of interest, see that we can interpret the policy ν?k(xk) as a
perturbation ∆ = DL?(δ) = D∆A to the system matrix A. Thus the controller K?(δ) can
accommodate some uncertainty in A, namely this D∆A. Now, the idea is the following, under
the results from Lemma 3-2.9 we can rewrite the game into:

inf
K∈Rm×n

sup
∆A∈Rn×d

E
x0,v

[ ∞∑
k=0

αkx>k

(
Q+K>RK − δ−1∆>A∆A

)
xk

]
,

s.t. xk+1 =
(
A+BK +D∆A

)
xk + vk,

vk
i.i.d.∼ P(0,Σv), x0 ∼ P(0,Σ0).

Then assume we know there is some γ ∈ R≥0 such that we can take the adversarial part out
of the cost and put it into the constraints:

inf
K∈Rm×n

sup
∆A∈Rn×d

E
x0,v

[ ∞∑
k=0

αkx>k

(
Q+K>RK

)
xk

]
,

s.t. xk+1 =
(
A+BK +D∆A

)
xk + vk,

vk
i.i.d.∼ P(0,Σv), x0 ∼ P(0,Σ0),

〈∆>A∆A,Σx〉 ≤ γ, Σx = E
x0,v

[ ∞∑
k=0

αkxkx
>
k

]
.

This is a robust LQR problem under the set introduced in Definition 3-1.1. The question
remains, can we find a link between γ and δ, e.g., of the form h(δ) = γ, such that we can
perhaps relate their solutions as well? This question is affirmatively answered in Theorem
3-2.4.

With the intuition from this section in mind we present the proof of Theorem 3-2.4.

12In the terminology of p.81 ch.3 [BB95], given the feasible iterative scheme Pk+1 = Q + A>PkΛ−1
k A,

P0 = Q. Then call P+ := limk→∞ Pk the minimal solution to the GARE. This distinction between solutions
is important since other solutions might exist, which do not give rise to the desired stability properties.

13Not a general saddle-point (see e.g. [Mag76])
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3-2 Solving a Robust LQR Problem 29

Proof of Theorem 3-2.4 Now this apparent link between the solution to a robust LQR
problem and a dynamic game as set forth in section 3-2-2 is formalized, which constitutes
the main result, Theorem 3-2.4. This is not new, see for example [DB92, HS07], where in the
latter14, the pair (γ, δ) is interpreted via multiplier theory (cf. [Lue69, Ber99]) with respect
to a constraint of the form

∑∞
k=0 α

kw>k wk ≤ γ. We provide a slightly different proof in terms
of (K,L) instead of

(
{uk}k, {wk}k

)
which eventually allows for numerically finding a solution

depending on δ, given γ (see Lemma 3-4.1).

Recall Definition 3-1.1 and the RLQR problem (3-1.2). Let a solution to (3-1.2) be denoted
by the pair

(
K?(γ),∆?

A(γ)
)
whereas a solution to (3-2.16), if it exists, is

(
K?(δ), L?(δ)

)
. Then

the next proof allows us to link the solution from the dynamic game (3-2.16) to the solution
of the robust LQ regulator (3-1.2). This proof of Theorem 3-2.4 is split up into a few parts.

Proof of Theorem 3-2.4 part (i),(ii) and (iiia). Regarding (iiia), first consider the game (3-
2.16). By Lemma 3-2.9 the cost can be equivalently written as f(K,L) − δ−1g(K,L) for
uk = Kxk, wk = Lxk, xk+1 = Axk + Buk + Dwk + vk and the pair f(K,L), g(K,L) being
defined by

f(K,L) = E
x0,v

[ ∞∑
k=0

αkx>k

(
Q+K>RK

)
xk

]
, (3-2.18)

g(K,L) = E
x0,v

[ ∞∑
k=0

αkw>k wk

]
=
〈
L>L,Σx

〉
, (3-2.19)

with Σx = E
x0,v

[∑∞
k=0 α

kxkx
>
k

]
15. Then supL{f(K ′, L)−δ−1g(K ′, L)} corresponds to program

P2 from Lemma A-0.1 with the map h from (3-2.5) and an additional (fixed) parameter K ′.
The map h(δ) is non-decreasing on some interval [0, δ) ⊂ R≥0, δ < ∞. To see why we
have this interval, recall that feasibility of the game is defined by a condition of the form
δ : δ−1I − P � 0. Indeed, in [Whi90, HS07] the parameter δ resembles their “breakdown”
point θ.

Regarding (i)-(ii), by construction of the result for (iiia), the programs (3-1.2) and (3-2.16)
are of the form

P̃1(γ) :


inf

K∈Rm×n
sup

L∈Rd×n
f(K,L)

s.t. g(K,L) ≤ γ,
P̃2(δ) : inf

K∈Rm×n
sup

L∈Rd×n
f(K,L)− δ−1g(K,L),

respectively, for f(K,L) and g(K,L) defined by (3-2.18) and (3-2.19).

These programs
(
P̃1(γ), P̃2(δ)

)
correspond to P1(γ) and P2(δ) from Lemma A-0.1 but with

an outer minimization step over K. Let the corresponding solutions to the inner maxi-
mization problems be denoted by L?1(γ,K) and L?2(δ,K). Then by Lemma A-0.1 we have
L?1(γ,K) = L?2

(
h−1(γ),K

)
. Moreover, when h(δ) = γ then L?1(γ,K) = L?2(δ,K) and thereby

g
(
K,L?1(γ,K)

)
= g

(
K,L?2(δ,K)

)
.

14Specifically, see sec. 2.4 for an introduction and ch.7 and 8 for a formal discussion.
15This step relies on the Bounded Convergence Theorem (cf. p.57 [AL06]) in that implicit in the definition

of h(δ) resides feasibility of the game, thereby boundedness of the two parts of the cost. This justifies the
splitting of E[·], i.e., limn→∞

∫
X fn + gndµ =

∫
X limn→∞ fndµ+

∫
X limn→∞ gndµ.
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30 Game Theoretic Robust Control

Now let K?(δ) be the solution to the outer minimization of P̃2. To show that this K?(δ) is
also optimal for P̃1 assume, like in Lemma A-0.1 for the sake of contradiction it is not. For
P̃1 we effectively consider infK

{
f
(
K,L?1(γ,K)

)}
where it is known that g

(
K,L?1(γ,K)

)
≤ γ

holds. However, since h(δ) = γ we can equivalently consider infK
{
f
(
K,L?2(δ,K)

)}
. Then to

continue the contradictive argument assume there is some K̃ such that

f
(
K̃, L?2(δ, K̃)

)
< f

(
K?(δ), L?2

(
δ,K?(δ)

))
.

By construction we have h(δ) = γ, and thus g
(
K̃, L?2(δ, K̃)

)
= γ = g

(
K?(δ), L?2

(
δ,K?(δ)

))
such that existence of such a K̃ contradicts optimality ofK?(δ) in P̃2. Therefore, the condition
that h(δ) = γ implies that if the pair

(
K?(δ), L?(δ)

)
exists, it is an optimal solution to both

(3-2.16) and (3-1.2).
Thus, when there is a δ ≥ 0 : h(δ) = γ, which we have by construction of the Theorem, then
the solution to (2-1.2) is given by the pair

(
K?(δ), L?(δ)

)
, for which the expressions are given

by Lemma 3-2.9. Moreover, the statement of the Theorem can be extended to assert that
these matrices exist, as the conditions can be made to be in correspondence with this Lemma
3-2.9 (feasibility of (3-2.16), e.g., (A,B,C) being a minimal realization).

Remark 3-2.10 (Least-favourable model). It does not change any of the results, but we can in
fact establish that our worst-case model is a least-favourable model. The proof is analogous to
the one above.

At last we characterize the regularity of the map h in the context of Theorem 3-2.4, which is
again very useful with numerical algorithms in mind. This is done in the spirit of the work
by Polderman [Pol86a, Pol87].

Proof of Theorem 3-2.4 (iiib). We will first show that P+(δ)16 is analytic over [0, δ), where-
after the result easily follows via the dependence of h(δ) on P (δ). Let C be defined by
Q = C>C. Then define for an arbitrary minimal realization (A,B,C) the matrix valued map
` : R≥0 × Sn+ → Sn+ by

`(δ, P ) = P −Q− αA>P
(
In + α

(
BR−1B> − δDD>

)
P
)−1

A. (3-2.20)

This map ` is Cω over some open set (0, δ) × V ⊂ R≥0 × Sn+ since rational functions are
analytic on their domain. To continue, we will show that in specific neighbourhoods of
(δ̃, P̃ ) ∈ (0, δ) × V , zeroing `, there exist Cω maps P (δ) such that `(δ, P (δ)) = 0. To that
end, define Γ(∆P ) , `(δ̃, P̃ + ∆P ) and consider only the linear terms, denoted by L=, in ∆P :

Γ(∆P ) L=∆P − αA>(P̃ + ∆P )
(
In + α

(
BR−1B> − δ̃DD>

)
(P̃ + ∆P )

)−1
A

L=∆P − αA>(P̃ + ∆P )Λ̃−1
∞∑
k=0

(−1)k
(
α(BR−1B> − δ̃DD>)∆P Λ̃−1

)k
A

L=∆P − αA>(In − P̃ Λ̃−1α(BR−1B> − δ̃DD>)∆P Λ̃−1A

L=∆P − αA>Λ̃−>∆P Λ̃−1A.

These steps hinge on geometric series for matrices, and a few linear algebraic identities17. Now
16See Lemma 3-2.9 for more on this notation.
17Most notably: P (1 +QP )−1 = (1 + PQ)−1P and (I + P )−1 = I − (I + P )−1P .
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3-2 Solving a Robust LQR Problem 31

since we know that Λ̃−1A is
√
α-stable when P̃ is P+(δ̃), the map Γ must be non-singular

(see Lemma 2.3 [Pol86a]) for such a point
(
δ̃, P

+(δ̃)
)
. Therefore, we can apply the Implicit

Function Theorem (cf. [KP03]), which asserts (locally) the existence of an unique Cω map
P (δ) such that `(δ, P (δ)) = 0 for all δ ∈ U

δ̃
⊂ R≥0 plus P (δ̃) = P̃ . Since the pair (δ̃, P̃ )

was arbitrary, up to being a minimal solution, this holds for any pair (δ, P+(δ)), making
P

+(δ) ∈ Cω
(
(0, δ)

)
since P (δ)|δ∈U

δ̃
are unique (see [SW94]) and stabilizing by continuity.

This implies that L?(δ) is Cω in δ and by Theorem E.1.418. from [vS18], so is Σx, such that
indeed the map h(δ) is analytic over some bounded interval. Finally, to extend (0, δ) to [0, δ)
observe that limδ↓0 h(δ) = 0, which concludes the proof.

See section 3-4-2-2 for some graphs of the map h.

3-2-3 A Relation to Contemporary Results, Inner and Outer Approximations

In Theorem 3-2.4 one solves a robust optimal control problem over Aγ . To immediately link
this to contemporary end-to-end frameworks we can find inscribed balls of ∆A and ∆B.

Since the algebraic Riccati equation (corresponding to discrete-time LQR) is analytic in
(A,B,C) on the space of minimimal realizations [Del84], which is itself open in Rn2+mn+np,
arbitrary small perturbations (∆Aε = εA) will not blow up the cost. Therefore, we can always
find a ball around 0. However, here we try to quantify this ball.

Lemma 3-2.11 (An Inscribed Ball of ∆Ac`). Consider (3-1.2) and assume Q+
(
K(γ)?

)>
RK(γ)? �

0 then E− ⊆ �γ
(
Â+ B̂K?(γ)

)
for:

E− :=
{

∆Ac` ∈ Rd×n : ‖∆Ac`‖
2
F ≤ γ

[
κ
(
Q+

(
K(γ)?

)>
RK(γ)?

)
Tr(Σ?

x(γ))
]−1

}
.

As previously remarked, these balls are by no means natural in terms of control theoretic un-
certainty sets, but from a statistical point of view they are relevant (cf. [AYPS11, SMT+18]).
Regarding an outscribed ball E+, one can observe that if we write the discrete Lyapunov
equation compactly as Σx(∆A) = αAc`Σx(∆A)A>c` +W and assume W � 0 then

�γ(Âc`) ⊆
{

∆Ac` ∈ Rd×n : ‖∆>Ac`‖
2
F,W ≤ γ

}
=: E+.

Lemma 3-2.11 applies to some uncertainty in Ac`, or if you like, in A. This can be extended
to a rectangular set of uncertainties in A and B.

Lemma 3-2.12 (An Inscribed rectangular set of (∆A,∆B)). Assume {∆Ac` : ‖∆Ac`‖22 ≤
r} ⊂ �γ

(
Â + B̂K?(γ)

)
and define r̃ := r∆A

+ r∆B
rK + 2√r∆A

√
r∆B

√
rK for some positive

scalars r∆A
, r∆B

, rK . Then, for all
(
∆A,∆B,K

?(γ)
)
such that ‖∆A‖2F ≤ r∆A

, ‖∆B‖2F ≤ r∆B
,

‖K?(γ)‖2F ≤ rK we have ∆A + ∆BK
?(γ) ∈ �γ

(
Â+ B̂K?(γ)

)
when r ≥ r̃.

Given these results, we can in principle find some finite-sample guarantees for our framework,
which are by no means sharp or even computationally attractive. The point is that under
mild conditions we have a non-empty interior.

18Effectively, by the results from Polderman [Pol87]
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32 Game Theoretic Robust Control

Proof of Lemma 3-2.11. Using Lemma A-0.2 we can bound sup∆A∈∂�γ ‖Σx(∆A)‖2. First,
observe that by construction we have〈

Q+
(
K?(δ)

)>
RK?(δ),Σ?

x

〉
≥
〈
Q+

(
K?(δ)

)>
RK?(δ),Σx(∆A)

〉
∀∆A ∈ ∂�γ .

If Q+
(
K?(δ)

)>
RK?(δ) � 0 then we can directly apply Lemma A-0.2 and find

sup
∆A∈∂�γ

‖Σx(∆A)‖2 ≤ κ
(
Q+

(
K?(δ)

)>
RK?(δ)

)
Tr(Σ?

x).

Now we find a bound via

γ =〈∆>A∆A,Σx(∆A)〉
≤‖∆A‖2F sup

∆A∈∂�γ
‖Σx(∆A)‖2

≤‖∆A‖2Fκ
(
Q+

(
K(δ)?

)>
RK(δ)?

)
Tr(Σ?

x).

These inequalities imply that for all ∆A ∈ ∂�γ we have

 γ

κ
(
Q+

(
K(δ)?

)>
RK(δ)?

)
Tr(Σ?

x)

1/2

≤ ‖∆A‖F

which defines an inscribed ball:

E− =
{

∆A ∈ Rd×n : ‖∆A‖F ≤
(
γ
[
κ
(
Q+

(
K(δ)?

)>
RK(δ)?

)
Tr(Σ?

x)
]−1

)1/2
}
.

Figure 3-5: Schematic representation of E− and E+ with respect to �γ .

Proof of Lemma 3-2.12. As before, let ∆Ac` := ∆A + ∆BK
?(γ). Now if we have an un-

certainty set defined by all (∆A,∆B,K) such that ‖∆A‖F ≤
√
r∆A

, ‖∆B‖F ≤
√
r∆B

and
‖K‖F ≤

√
rK , then a sufficient condition to solve over this uncertainty set is that ‖∆Ac`‖2 ≤
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√
r is a valid inscribed ball for r ≥ r∆A

+ r∆B
rK + 2√r∆A

√
r∆B

√
rK . This simply follows

from

r ≥‖∆A‖2F + ‖∆B‖2F ‖K?(γ)‖2F + 2‖∆A‖F ‖∆B‖F ‖K?(γ)‖F
≥‖∆>A∆A‖2F + ‖

(
K?(γ)

)>∆>B∆BK‖2F + 2‖∆>A∆BK‖F
≥‖
(
∆A + ∆BK

?(γ)
)>(∆A + ∆BK

?(γ)
)
‖2

=‖∆Ac`‖
2
2.

Obtaining sharper bounds would be interesting, since then the ratio Vol(E+)/Vol(E−), possi-
bly as a function of γ, would provide further information about the symmetry of our set.

3-3 More on the Qualitative Properties of Game Theoretic Robust
LQ Regulators

In this section we highlight several structural properties of our uncertainty set and worst-case
model which bring about new insights in potential applications, or the lack thereof.
Linear Dynamical systems are unfortunately often compared based on how close they are in
a certain, non-system-theoretic, norm. For example, when looking at the system matrix, a
stable- and unstable system can be arbitrary close in a any induced p-norm, say ‖Â − A‖2,
while qualitatively they are obviously different.
Moreover, from a robust control point of view, the choice of distance metric greatly influences
the shape of the confidence set around some (Â, B̂) in Rn×n×Rn×n. As indicated via Example
2-2.1 and 2-2.3, these sets are for example by no means convex.
There are of course many methods to measure the distance between systems e.g., stability radii
and frequency domain norms, but a particular natural approach is to take closed-loop stability-
and thereby design specifications, directly into account. To some readers this approach might
be reminiscent of the Gap- and Graph topologies (e.g., see [Zhu89]). In short, given a nominal
transfer function H(P0, C0) for P0 the plant and C0 the controller, they effectively study
neighbourhoods of P0

U(P0, ε) = {P : C0 stabilizes P, ‖H(P0, C0)−H(P,C0)‖ < ε}

inducing a topology T . Then if the systems P and P0 are ε-close in T , they are necessarily
stabilizable with the same controller.
Instead of measuring distances between general systems, we can first try to classify them.
Mechanically speaking, think of separating spring- and damper-like scalar systems. Therefore,
we investigate to what extend our framework preserves topological properties, as introduced
in section 2-2-4. Here we will follow the exposition by Kuiper and Robbin in [Rob72, KR73],
focusing on linear endomorphisms, which are simply linear maps f : V → V for some
vector space V . We speak of automorphisms when the map f is also invertible.
We use the following definition19

19See appendix B-2 for an explanation of how this definition can be interpreted.
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34 Game Theoretic Robust Control

Definition 3-3.1 (Topological Equivalence). Two endomorpshims f : V → V and g : W → W
are topologically equivalent (conjugate) if and only if there exists a homeomorphism ϕ : V →
W such g = ϕ ◦ f ◦ ϕ−1, i.e. the diagram

V V

W W

f

ϕ ϕ

g

commutes. This relation will be denoted by f t∼ g.

Instead of Definition 3-3.1 one encounters linear equivalence more often in System & Control
Theory, e.g., Ã = TAT−1 for some T ∈ GL(n,R). A simple, yet illuminating example from
[KR73] is given by f(x) = 2x and g(x) = 8x. When thought of as dynamical systems, we
cannot speak of linear equivalence since the eigenvalues are clearly different, but qualitatively
they are the same. Thus indeed, we observe that f t∼ g since ϕ(x) = x3 is the corresponding
homeomorphism20. In fact, these scalar linear maps have just 7 equivalence classes, greatly
simplifying their study.

Consider a linear dynamical system as an endomorphism on some finite n-dimensional vector
space V , say Rn. Now decompose Rn as Rn = W∞(f)⊕W+(f)⊕W−(f)⊕W 0(f), defined
by

W∞(f) =
⊕
λ=0

Eλ(f), W+(f) =
⊕

0<|λ|<1
Eλ(f), W−(f) =

⊕
|λ|>1

Eλ(f), W 0(f) =
⊕
|λ|=1

Eλ(f),

(3-3.1)

for Eλ(f) the usual eigenspace of the pair (f, λ). Moreover, let f |a = f |Wa(f) be the auto-
morphic part, i.e. W a = W+ ⊕W− ⊕W 0. In Conjecture A of [KR73] several conditions
are proposed to assert topological equivalence. We focus on one of them: orientation. See
[AMR88, ch.6] for a formal discussion on orientation. We call a linear automorphism f ori-
entation preserving when the sign of the determinant of the unit cube is invariant under
the map f . This preservation is denoted by Or(f) = 1, otherwise Or(f) = −1.

Lemma 3-3.2 (Orientation, a necessary condition). Let f : V → V and g : W → W be two
linear automorphims. Then g = ϕ ◦ f ◦ ϕ−1 for some homeomorphism ϕ : V → W , only if
Or(f) = Or(g).

(informal) Proof of Lemma 3-3.2 . If we could pick ϕ to be linear, the result is obvious since
we merely have a similarity transformation which only holds when det(f) = det(g). The
general result follows from the fact that ϕ is a homeomorphism, thereby either ϕ and ϕ−1

preserve orientation, or both reverse it. Formally put, as is widely known, orientation is a
topological invariant.

For example, take f(x) = 0.5x and g(x) = −0.5x, then since the orientations are differ-
ent, they are not topologically equivalent. When looked upon as a dynamical system, e.g.,
xk+1 = f(xk), then it is clear that for non-zero initial conditions there does not exist a

20Simply check that 8x ◦ x3 = x3 ◦ 2x = 8x3.
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homeomorphism mapping Im(f) to Im(g), since such a homeomorphism must be necessar-
ily monotone. A prototypical example of a n-dimensional orientation preserving dynamical
system is a mechanical system moving through space. There is no way that such a rigid
object can turn through itself under its own dynamics, e.g., see Figure 3-6. More examples
can be put together in for example the area of graph-theoretic models due to permutation
matrices having determinant ±1. To continue, given some endomorphism f , we can without

Figure 3-6: The unit-cube remains positively oriented under a orientation preserving automor-
phism.

loss of generality appeal to Lemma 3-3.2, by using f |a instead21. Of course, the g under
consideration must satisfy dim

(
W a(f)

)
= dim

(
W a(g)

)
.

As indicated before, the type of uncertainty set we consider is difficult to quantify due to the
dependence on K?(γ)22. We can however observe several qualitative features.

Lemma 3-3.3 (Qualitative features of extremizers in (3-1.2), implications of Theorem 3-2.4).
For simplicity assume D = In, then

(i) The worst-case closed-loop uncertainty resides on the boundary of the uncertainty set,
i.e., when h(δ) = γ we know that ∆?

Ac`
(γ) ∈ ∂�γ

(
Â+ B̂K?(γ)

)
.

(ii) The worst-case closed-loop system can be written as Λ−1Â for some Λ−1 ∈ GL+(n,R),
such that the kernel of Â is preserved under optimal robust feedback and worst-case
uncertainty. Moreover, when Σ0 � 0 we must have �γ

(
Â + BK?(γ)

)
⊆ {∆A ∈ Rn×n :

Ker(Â) ⊆W+(
√
α(Â+ ∆A))} (see Example 3-3.5 below).

(iii) Consider only uncertainty in A, then the automorphic part of the nominal and worst-
case A have the same orientation, i.e. Or(Âx|a) = Or

(
(Â+∆?

A(γ))x|a
)
. Moreover, there

is a symmetric positive-definite matrix T such that TÂ = (Â+ ∆?
A(γ)) = A?(γ), which

is stronger than the required T ∈ GL+(n,R) to preserve orientation.

(iv) For A?(γ) = Â + ∆?
A(γ), we have ‖A?(γ)‖F > ‖Â‖F almost surely. Moreover, using

decomposition (3-2.13) we additionally have, a.s., ‖B?(γ)‖F > ‖B̂‖F .

Orientation is just one part of topological equivalence, but to put it in simple words, item (iii)
tells us that an adversarial player does not reveal itself that easily. Moreover, it means that

21For example, f(x) =
(

1 0
0 0

)
x, g(x) =

(
0 0
0 1

)
x and h(x) =

(
1 1
0 0

)
x have the same orientation. See

that f(x) and h(x) are even linearly equivalent.
22See for example (3-1.2), we maximize over Aγ(Â+BK), the uncertainty depends on the solution K?(γ).
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without loss of generality we can optimize over some subset of Aγ , preserving the orientation
of Â. What is more, GL(+)(n,R) is an invariant set under Â 7→ Â + ∆?

A(γ) =: A?(γ)23.
In addition, item (ii) and (iii) imply that the W∞(Âx) is invariant under the worst-case
perturbation, with our without feedback. These observations, together with item (iv), intro-
duce new challenges for unbiased identification algorithms, one of them is explained in Figure
3-724, whereas section 3-4-4 highlights benefits in the context of biased identification. See
appendix B-5 for a brief introduction of why Least-Squares identification can lead (under for
example ergodic or episodic assumptions) to ellipsoidal sets of estimates.

Figure 3-7: Let s represent the real system matrix (vec(A)). Using unbiased least-squares we
can form an ellipsoid around s given by E := Ein ∪ Eout, containing estimates of s, denoted ŝ.
Then since ‖A?‖F > ‖Â‖F a.s., an estimate ŝ ∈ Emin might lead to a worst-case model close to
s, while the worst-case model related to a ŝ ∈ Emax is even further away from s then the initial ŝ.
Think of the vectors in (b). The critical observation is however that Vol(Eout) > Vol(Ein) such
that the push in the wrong direction is likely to dominate, hence, leading to bad performance.
This observation will be further highlighted in sections 3-4-3-1,3-4-4.

Also, one interpretation for why we have T ∈ Sn++ is that such a matrix generalizes positive
scaling, which is the cheapest method towards destabilization for an adversary, see for example
(3-4.8) from section 3-4-2-1 or think of T as the “radius” in matrix polar decomposition.
Moreover, it be observed that the spectrum of T does not intersect the open unit-disk, which
is exemplified in Figure 3-16 below. Another interpretation is the most clearly illustrated
when considering a standard LQ regulator problem, say for B = R = In and α = 1 such that
K?(0) = −(In + P )−1PA. Since P ∈ Sn+ we know that (In + P )−1P is symmetric. Going
back to our LQ problem, R � 0 prevents us from simply selecting K = −A, instead we end
up with closed-loop dynamics of the form x(k + 1) = (In − (R + P )−1P )Ax(k). So indeed,
the cost determines how x(k) → 0 for k → ∞, but we also see this symmetric scaling factor
in front of A since for the cost the influence of state xi(k) on xj(k + 1) or the influence of
state xj(k) on xi(k + 1) are equally important.
To prove Lemma 3-3.3 we need one useful property of Λ(δ):

23Hence, setting Â← A?(γ) implies that “worst-worst-case” models are again members of GL(+)(n,R). This
observation is outside the scope of this work and more interesting in a N -player, N > 2, game theoretic
framework.

24To see how Vol(Eout)/Vol(Ein) grows with dimension n, consider two Euclidean balls: Br(0) and Bx(0)
with x < r/2. Then from standard volume formulas for n-balls it follows that Vol

(
Br(0)

)
/Vol

(
Bx(0)

)
> 2n

such that Vol(Eout)/Vol(Ein) & Cn, C ∈ (1, 2], for an even idealized scenario.
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Lemma 3-3.4 (Λ(δ) is an orientation preserving map). The matrix Λ(δ) has positive eigenvalues
and thus det

(
Λ−1(δ)

)
> 0.

Proof. The map Λ(δ) =
(
In + α(BR−1B> − δDD>)P (δ)

)
has positive eigenvalues for δ ↓

0 since limδ↓0 Λ(δ) = (In + αBR−1B>P ) and any product of (symmetric) positive semi-
definite matrices has again positive eigenvalues (although it might fail to remain positive
semi-definite). Then recall the fact that GL(n,R) has two connected components denoted
GL+(n,R) and GL−(n,R) for the orientation preserving and -reversing maps, respectively.
Then the result follows from limδ↓0 Λ(δ) ∈ GL+(n,R) and continuity in δ, i.e., the matrix
Λ(δ) cannot leave the set of orientation-preserving non-singular matrices for δ ∈ [0, δ).

Proof of Lemma 3-3.3. We do the proof per item:

(i) This follows directly from Lemma 3-2.6 and the proof of Theorem 3-2.4 since the worst-
case uncertainty ∆?

A(δ) from Theorem 3-2.4 satisfies h(δ) =
〈(

∆?
A(δ)

)>∆?
A(δ)Σ?(δ)

〉
= γ.

(ii) The fact that the worst-case closed-loop system can be written as
(
Λ?(δ)

)−1
Â follows

from Lemma 3-2.9 and Lemma 3-3.4 or just by direct computation. This also holds for
γ → 0 since it also holds for the standard LQR closed-loop system[Pol86b]. The last
part follows from (3-2.10), K?(γ) is always of the form XÂ for some matrix X. Of
course, the intuition is that if your goal is regulation, then once xk ∈ Ker(A) it makes
no sense to further inject energy in the system. Therefore, any additive perturbation
∆A to Â must obey Ker(Â) ⊆W+(√α(Â+ ∆A)

)
when Σ0 � 0.

(iii) Lemma 3-3.4 has several implications. For example, it is known that the worst-case
closed-loop system is given by Λ−1(δ)Â, which has thus the same orientation as Â.
Moreover, it is known that the worst-case drift term is given by A?(γ) = Â+D∆?

A(δ) =
(I + δαDD>PΛ−1)Â. Also, it follows from equation (3.4a′′) in [BB95] that PΛ−1 � 0,
so indeed, now we do have symmetry. So when for example D = In, we have that the
nominal- and worst-case drift have the same orientation. To intuitively see why we speak
of orientation-preserving, take the SVD of any T ∈ GL+(n,R) which is T = UΣV >,
where both U and V are rotation matrices, while Σ is a positive scaling matrix. Then
TÂ will be a rotated and scaled version of Â, no other operations, like mirroring, occur.
Note that actually, the scaling matrix T is an element of Sn++. When Â is not full-rank,
we can without loss of generality take just the automorphic part.

(iv) We know that A?(γ) is of the form (In + αδPΛ−1)Â = TÂ, T ∈ Sn++. This means
that λmin(T ) ≥ 1 or λmin(T ) > 1 a.s. when P � 0. Now embed Â into n2 and such
that vec

(
A?(γ)

)
= (In ⊗ T )vec(Â). The spectrum and symmetry of T are preserved in

(In ⊗ T ) such that we can appeal to inequalities of the form λmin(Y )‖x‖2 ≤ ‖Y x‖2 ≤
λmax(Y )‖x‖2, Y ∈ Sn

2
++. Hence, the transformation will make any vector grow in 2-

norm. The results follows from the element-wise interpretation of the Frobenius-norm.
Regarding the decomposition (3-2.13), using the identity

(
I+(I−P )−1P ) = (I−P )−1 we

can write B?(γ) as
(
In−αδP (δ)

)−1
B̂. Then the result follows from

(
δ−1In−αP (δ)

)
� 0,

symmetry of P and a similar line of arguments as above.
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Example 3-3.5 (Kernel of LQ regulators). Consider the matrices

Â =
(

1 −1
0 0

)
, A?

(
1.1 0.1
0 1.2

)
, B = I2.

Then c(1 1)> ∈ Ker(Â) ∀ c ∈ R. It is known that any optimal LQ regulator is of the
form K(A,B) = X(A,B)A. for some non-zero matrix X. Let us design a stabilizing LQR
controller for (Â, B) and observe that for any non-zero c ∈ R:

lim
k→∞

(
A? +BX(Â, B)Â

)k
c

(
1
1

)
=∞.

while a simple controller of the form K = −0.5I2 would have done the trick for both (Â, B)
and (A?, B). The key observation is of course that Eλ=1.2(A?) = Ker(Â), so that the control
gain cannot counteract the growth of the state. This example shows that the usual linear
optimal control methods stabilize a very particular subset of systems heavily relient on Â.

Lemma 3-3.4 has another implication:

Corollary 3-3.6 (Closed-loop Topological Equivalence). Let D = In, α = 1 and Σv = 0,
i.e., make (2-1.1), up to x0, deterministic. Moreover, interpret ∆?(γ) as either ∆?

A(γ) or
∆?
Ac`

(γ) for some feasible formulation of (3-1.2) or (3-2.15). Then, the nominal-, robust-
and worst-case robust closed-loop systems given by f(x) :=

(
Â + B̂K?(γ)

)
x|γ=0, g(x) :=(

Â+ B̂K?(γ)
)
x|γ∈(0,γ), h(x) :=

(
Â+ B̂K?(γ) + ∆?(γ)

)
x|γ∈(0,γ), respectively, are topologically

equivalent. In other words, ∀δ ∈ [0, δ) there exist a homeomorphisms ϕ,ψ : Rn → Rn such
that ϕ ◦ f ◦ ϕ−1 = g = ψ ◦ h ◦ ψ−1.

Proof. Recall that f(x) = Λ−1(δ)Âx|δ=0, g(x) =
(
In − δP (δ)

)
Λ−1(δ)Âx|δ∈(0,δ) and h(x) =

Λ−1(δ)Âx|δ∈(0,δ). Since (δ−1In − P ) � 0 must hold, the kernel and orientation carry over.
Next, decompose Rn as above: Rn = W∞(Âx)⊕W+. Then the result follows from Proposi-
tion 5.2 in [KR73] and Lemma 3-3.4.

Corollary 3-3.6 indicates that the uncertainties we consider are somewhat natural25, at least
for a deterministic system. Think of an identified model (Â, B̂) used for simulation and
controller design. Then, for our uncertainty set (3-1.1) there is a K, i.e., K?(γ) such that
the simulated behaviour extends structurally to the real system, with or without worst-case
uncertainty. Think of Figure 3-8 (a), if c1 is a simulated trajectory for some scalar system,
then the robust and worst-case trajectories are of the form c2, c3, but never like curve w.
This is the beauty. However, in contrast to uncertainty sets arising from statistics, these kind
of structure preserving uncertainties are not symmetric; for example, like region (3) around
scalar system â in Figure 3-8 (b), which is clearly not symmetric.

25Previously we used mechanical intuition to introduce topological equivalence, but one needs to be careful.
For example, diag(e, e)x t∼ diag(−e,−e)x, which hinges on orientation.
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Figure 3-8: (a) The systems from Corollary 3-3.6 share qualitative properties like {c1, c2, c3}.
(b) R/ t∼ consists of 7 classes, which are by no means symmetric around a model within.

3-3-1 Almost Surely Conservatism

Item (iii) from Lemma 3-3.3 has a different implication. Before stating this result we intro-
duce some terminology, but only the bare minimum. Classic references on this material are
Halmos [Hal70] and Folland [Fol99]. However, instead of general topological spaces, we will
be concerned with Rn. A set A ⊂ X is dense in X when cl(A) = X. The local complement
of dense sets are especially important for us. A set X ⊂ Rn is nowhere dense in Rn when
there does not exist any Euclidean ball Br(x) around some x ∈ X, which is fully contained in
X. Furthermore, we denote by µ the n-dimensional Lebesgue measure, which coincides with
the standard volume, so for any (measurable) set S ⊂ Rn we have µ(S) = Vol(S). Indeed,
any nowhere dense set X ⊂ Rn is of measure zero, i.e., µ(X) = 0. Now following [Fol99],
let (X,F , µ) be some measure space, where a statement T is true for all x ∈ X, except for
some set Y ⊂ X, with µ(Y ) = 0. Then T is said to be true for almost every x ∈ X, or
differently put, T is true almost everywhere. When the underlying measure space is actu-
ally a probability space, i.e., µ(X) = 1, we say that T is true almost surely (a.s.). At last
we give two important examples of sets which are open and dense in their ambient spaces
under the standard topology. First, the general linear group GL(n,R) is open and dense in
Rn×n (cf. [DK99]). Secondly, controllable pairs (A,B) are open and dense in Rn×n × Rn×m,
following essentially the same argument as for GL(n,R). Thus, any triple (A,B,C) sampled
from Rn×n × Rn×m × Rp×n is almost surely a minimal realization.

Now we can continue the discussion on uncertainty sets. Classically, uncertainty sets like
proposed in [GBA94] were of the form{

(∆A,∆B) :
(
∆A ∆B

)
= DF

(
E1 E2

)
, F>F � I

}
(3-3.2)

for some fixed D,E1, E2 and free variable F , all of appropriate dimension. At that point
these sets were mostly of academic interest. However, recently, the purpose of solving robust
LQ regulators comes from the desire to establish end-to-end performance bounds, e.g., re-
gret- and sample complexity bounds. Therefore, the modern description of the uncertainty is
fully driven by identification algorithms and measure concentration inequalities. Besides the
operator-norm [SMT+18, DMM+18], e.g., ‖∆A‖2 ≤ εA, ‖∆B‖2 ≤ εB, a different set, based on
the Frobenius-norm, is often used and closely resembles our description. This latter group,

Master of Science Thesis Wouter Jongeneel



40 Game Theoretic Robust Control

e.g., [AYS11, AL18, CKM19], builds on [AYPS11] (and references therein), which gives a
concentration inequality for `2-regularized least-squares. In that work, the authors use the
Optimism in the Face of Uncertainty (OFU) principle. Here, a confidence set around a nom-
inal model is created, whereafter the control law is designed for the most optimistic model
in the set. This should be contrasted with our approach so far, which could have been called
Pessimism in the Face of Uncertainty. To be brief but concrete, we informally state part of
Theorem 1 from [AYS11]:

Theorem 3-3.7 (Part of Theorem 1 [AYS11]). Let Θ> :=
(
A B

)
, z>k :=

(
x>k u>k

)
such

that xk+1 = Θ>zk + vk and assume that the noise is sub-Gaussian. Now let Θ̂k be the usual
`2-regularized least-squares estimator of Θ. Then with probability at least 1− δ we have

Tr
(
(Θ− Θ̂k)>Vk(Θ− Θ̂k)

)
≤ βk(δ)

for Vk ∈ Sn+m
++ defined by Vk := λI +

∑k−1
i=0 zkz

>
k and some function βk.

Therefore, when we define ∆Θk := Θ− Θ̂k, we have

P
{

∆Θk ∈
{

∆Θ ∈ Rn×(n+m) : ‖∆Θ‖2F,Vk ≤ βk(δ)
}
≥ 1− δ

}
, (3-3.3)

which is precisely of the form as the uncertainty set �γ (see Definition 3-1.1), e.g., after an em-
bedding in Rn2+nm a standard ellipsoid26. See that these formulations are remarkably similar
if we assume uk = Kxk. Specifically, let λ→ 0, α→ 1 and truncate Σx = E

x0,v

[∑∞
k=0 α

kxkx
>
k

]
:

Tr
(
(Θ− Θ̂k)>Vk(Θ− Θ̂k)

)
= Tr

(∆A ∆B

)(In
K

)
k−1∑
i=0

xix
>
i

(
In
K

)> (
∆A ∆B

)>
= Tr

(
∆>Ac`

k−1∑
i=0

xix
>
i ∆Ac`

)
=
〈

∆>Ac`∆Ac` ,
k−1∑
i=1

xix
>
i

〉
.

(3-3.4)
Where the last step follows from the invariance of Tr(·) under cyclic permutation and the
symmetric term in the middle. Thus, as seen from (3-3.4), the set in (3-3.3) and Defi-
nition 3-1.1 are closely related. For example, when one can find a feasible γ such that
Vk � sup∆A∈�γ Σx(∆A) and βk(δ) ≤ γ, then a robust controller, with high probability stabil-
ity guarantees, can be synthesized. This is of course merely a reformulation of the approxi-
mations in section 3-2-3.

Now, Proposition 3-2.1 showed that our set can be non-convex such that one might imme-
diately conclude that when we solve the robust LQR problem over one of these inscribed
ellipsoids we just discussed, the control law is necessarily conservative. However, one might
argue as well that since our set is connected (ch.4) with an a.s. smooth boundary27 it becomes
ellipsoidal if we just take γ to be sufficiently small? This would be great, since then we might
be able to efficiently solve the robust LQ regulator problem corresponding to (3-3.3). It turns
out that this is not the case, as was already hinted at in Figure 3-4.

26Recall, an ellipsoid is usually defined as the solid E := {x ∈ Rn : x>Qx ≤ 1} for some Q � 0, see e.g.,
ch. V [Bar02].

27This can be shown using the tools from [Pol86a].
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Lemma 3-3.8 (Most adversaries do not live on ellipsoids). Let D = In and for simplicity of
notation, consider only some uncertainty in A. Then we can make two comments regarding
the relation between (3-3.3) and the uncertainty sets as seen in dynamic games, i.e., (3-3.5)
below.

(i) Consider uncertainty sets of the form (3-3.3) with only some uncertainty in A such that
Vk ∈ Sn++. Then, there is a.s. no γ > 0 such that {∆A : ‖∆A‖2F,Vk ≤ γ} = {∆A :
‖∆A‖2F,Σx ≤ γ} with Vk = Σx, i.e., we should not expect to simply directly link (3-3.3)
via (3-3.4) to a dynamic game.

(ii) Moreover, the set

�γ
(
Â+BK?(γ)

)
=
{

∆A ∈ Rn×n : ‖∆>A‖2F,Σx ≤ γ
}

(3-3.5)

or better yet, its canonical embedding, via vec : Rn×n → Rn2, in Rn2

{
vec(∆>A) ∈ Rn

2 : ‖vec(∆>A)‖22,(In⊗Σx) ≤ γ
}

is almost surely no ellipsoid.

Proof of Lemma 3-3.8. Regarding (i), for the set to be ellipsoidal like (3-3.3) we need Σx to
be constant, at least locally. This Discrete Lyapunov solution in Definition 3-1.1 is unique,
depending on Ac` := Â+ ∆A +BK?(γ) in a Kronecker product fashion, i.e.,

vec(Σx) = (In2 − αAc` ⊗Ac`)−1vec(W ),

whereW � 0 contains the covariance matrices. Therefore, some different closed-loop systems,
Ac` and A′c`, can only give rise to the same Σx when they are both feasible and

Ac` ⊗Ac` = A′c` ⊗A′c`. (3-3.6)

However, we know from Lemma 3-3.9 (see below) that for some fixed Ac`, all A′c` which satisfy
(3-3.6) are nowhere dense in the ambient space Rn×n. Moreover, A′c` uniquely defines ∆′A by
translation. Hence, the set of ∆′A satisfying (3-3.6) is nowhere dense in Rn×n as well. This
means that Σx(∆A) is almost surely not constant, not even locally, which means that we can
never recreate a set similar to (3-3.3).

This does however not immediately imply that our game theoretic uncertainty set is most
likely no ellipsoid. For example, consider the two sets

E1 =
{
x ∈ Rn : x>F (x)x ≤ γ

}
, E2 =

{
x ∈ Rn : x>Qx ≤ γ

}
.

Then E1 = E2 for n = 1, f(x) = x2, Q = 1 and γ = 1, showing that the lack of a constant
weighting matrix does not rule out being ellipsoidal.

Regarding the second item (ii). If we demand that ∂�γ is ellipsoidal28, than it must contain
the worst-case uncertainty L?, but also −L? by symmetry. Since they are on the boundary

28With some abuse of notation, we mean, of the form {x : x>Qx = 1} for some Q � 0.
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we know that, for the scalar case29, (3-3.6) must hold. That means we consider for Âc` :=
Â+ B̂K?(γ) (or for a known B) the set

L(Âc`) :=
{
L : (Âc` − L)⊗ (Âc` − L) = (Âc` + L)⊗ (Âc` + L)

}
. (3-3.7)

If Âc` 6= 0 then L(Âc`) = 0, otherwise any appropriately sized L is a member of that set.
Thus, a necessary condition for �γ to be an ellipsoid is that Âc` = 0, which almost surely
never holds since the required (Â, B̂) live on a lower dimensional hyperplane. Although this is
unlikely to happen, we see exactly this behaviour in Section 3-4-2-1, where â and k(δ) cancel
each other out for δ → 1.

Now, for the general case (n ≥ 2), we compare Σx(L?) and Σx(−L?) and claim that Σ(L?) �
Σ(−L?) almost surely. Of course, when Σx(−L?) is not defined then the set is not el-
lipsoidal anyway, thus assume the contrary. Let C>C := Q, then assume for now that
(A,C) is observable such that we can appeal to Lemma A-0.3 since Q+

(
K?(δ)

)>
RK?(δ)−

δ−1(L?(δ))>L?(δ) � 0 by Lemma 3.5 from [BB95], which shows that Σx(−L?) � Σx(L?)
would be in conflict with optimality of L?. Then, Σx(L?) = Σx(−L?) fails to hold almost
surely, as discussed before via (3-3.6) and (3-3.7). This leads to our claim. Now, when
(Â, B̂) is controllable (Q relates to (A,C) being observable already), we know that P � 0
such that from (3-2.7) we know that L? ∈ GL(n,R) when Â ∈ GL(n,R). Under these con-
straints 〈(L?)>L?,Σx(L?) − Σx(−L?)〉 is almost surely unequal to 0, which concludes the
argument since these controllable/observable pairs and the general linear group are dense in
their ambient spaces.

Note that we only used symmetry, such that we can use the same line of thought and show
that our set is unlikely to be for example a ‖ · ‖2-ball as well.

Lemma 3-3.9. Given some Y ∈ Rn×n and consider the standard ‖ · ‖F -norm topology on
Rn×n, then the set

X :=
{
X ∈ Rn×n : X ⊗X = Y ⊗ Y

}
(3-3.8)

is nowhere dense in Rn×n.

Proof. For n = 1 we simply get X = ±√y, which is indeed nowhere dense in R. This can
be extended to higher dimensions. Let X ′ ∈ X , then we show that there does not exist an
arbitrary small non-zero perturbation matrix E, such that X +E ∈ X . Consider the element
(X ′ ⊗ X ′)11 =: x11, then we must have x2

11 = y2
11. Now, any component-wise perturbation

e11 must satisfy (x11 + e11)2 = y2
11 such that e11 = 0 or e11 = −2x11. Therefore, there does

not exist an arbitrary small ‖ · ‖F -norm ball around X ′, completely living in X .

So, any feasible ellipsoid of ∆A, inscribed in �γ , is inherently conservative in the sense that
the corresponding controller is almost surely synthesized to hedge against a larger set. The
crux is that Σx is a function of ∆A and Σx(∆A) is a.s. not constant on any neighbourhood
of some ∆A. Thus, as elegant as the relation between simple dynamic games and (3-3.3) may
seem, Lemma 3-3.8 tells us that its practical relevance is questionable. Of course, since the

29We cannot immediately generalize this to the general case since 〈L>L,Σx〉 = γ = 〈L>L,Σ2〉 does not
imply Σ1 = Σ2 when n ≥ 2.
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result is almost surely true, there are exceptions, and one exception is given in the scalar
example of section 3-4-2-3, where the set becomes symmetric for δ → 1. This should be
contrasted with Figure 3-4a, which appears to be ellipsoidal, but is not.

Extending this to some uncertainty in the pair (A,B) via the canonical decomposition from
section 3-2-1 does not change the conclusion as already indicated via (3-3.4), without loss of
generality we can take ∆Ac` instead of ∆A in Lemma 3-3.8. Then, under the assumption that
uk = Kxk generated Vk, item (i) changes to the a.s. non-existence of a γ > 0 such that for
∆Θ =

(
∆A ∆B

)
, {∆Θ : ‖∆Θ‖2F,Vk ≤ γ} = {∆Θ : ‖∆Θ‖2F,Σ′x ≤ γ} with Vk = Σ′x for

Σ′x =
(
In
K

)
Σx

(
In
K

)>
. (3-3.9)

Item (ii) immediately extends by taking ∆A , ∆Ac` and writing

∆Ac` = ∆A + ∆BK
?(γ) =

(
∆A ∆B

)( In
K?(γ)

)
, (3-3.10)

from where it can be observed that if the set (3-3.5) is not ellipsoidal in ∆A it is obviously not
ellipsoidal in ∆Ac` . Moreover, it can be observed that the decomposition of ∆Ac` results in a
set which is never compact30 and of infinite volume in the product space for ∆A × ∆B. So
any compact rectangular set for the pair (∆A,∆B) can never be of the same volume. Hence,
inscribed balls remain inherently conservative, even if B enters the picture independently of
A.

After the proof of Lemma 3-3.8 a comment is made that our set is almost surely no ‖ · ‖2-ball
as well, we do however not elaborate on this.

Now one might say that we should not be concerned with volumes of these sets but with the
corresponding costs. Really, we are only conservative when the actual uncertainty induces
(a.s.) a lower cost than the worst-case uncertainty. Assume that B is known and our Amatrix
is given by Â+ ∆A for some unknown ∆A. How likely is it that this additive uncertainty can
be represented as Â+ ∆A = TÂ for T ∈ Sn++? This is interesting, since by Lemma 3-3.3 (iii)
such a representation is a necessary condition in a our framework.

Lemma 3-3.10. Consider the standard ‖ · ‖F -norm topology on Rn×n. Then, for n ≥ 2 the
set {

∆A ∈ Rn×n : ∃T ∈ Sn++ : TÂ = Â+ ∆A

}
(3-3.11)

is nowhere dense in Rn×n.

Proof of Lemma 3-3.10. This follows immediately from Sym(n,R) being nowhere dense in
Rn×n, plus the fact that an action of any Â ∈ Rn×n, from the right, cannot change this31.
We will however give a more explicit argument below. First, consider det(Â) = 0, then from
(T − In)Â = ∆A it is found that the set of all ∆A ∈ Rn×n satisfying this equation cannot
be locally dense since det(∆A) = 0 while GL(n,R) is open and dense in Rn×n. Now, say

30There are several interpretations here, one can resort to the discussion from Section 3-2-1-1 or observe
from (3-3.10) that after decomposition, the weighting matrix Σ′x ∈ Sn+m

+ (3-3.9) is inherently rank-deficient.
31In fact, recall that Sym(n,R) ' Rn(n+1)/2.
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det(Â) 6= 0, then ∆AÂ
−1 must be at least symmetric. Assume that symmetry holds for

the pair (∆′A, Â′). We will show that an arbitrary small perturbation in ∆′A can destroy
the symmetry. Assume that the ijth element of Â′−1 is nonzero and consider an arbitrarily
small matrix-perturbation ∆A + E with E = εeie

>
j , i 6= j, for some arbitrarily small ε > 0.

Under such a perturbation (∆′A +E)Â′−1 cannot be symmetric. Hence, even in this case the
existence of any interior around ∆A is excluded since a valid (set of) T ’s does not exist. Note
that this argument cannot be made when n = 1 (in that case, feasible intervals do exist).

Lemma 3-3.10 implies that it is very unlikely that some additive perturbation coincides with
a worst-case uncertainty as derived from a dynamic game. Differently put, given the observed
behaviour32 of some partially unknown dynamical system (2-1.1), then the mean state pro-
cess can almost surely not be explained from a game theoretic point of view. Therefore, if
one solves a feasible robust LQR problem under this framework, then the solution is almost
surely conservative33. Then, again, extending the result to include B does not change the
conclusion since ∆Ac` = ∆A + ∆BK constrains the pair (∆A,∆B) to some lower dimensional
set. However, ∂�γ is also a lower dimensional set, which by Lemma 3-3.3 contains all worst-
case models, so the fact that the set is simply lower-dimensional is not immediately negative.
Nevertheless, looking at the corresponding argument we see that this idealized scenario can
only occur for n = 2, since then n2 − 1 = n(n + 1)/2. Hence, especially for n > 2, our
worst-case models live on a geometrically negligible set.

Remark 3-3.11 (More on symmetry). The reader might think that the previous result holds
in part due to Q and R being symmetric. What if they are merely positive (semi)-definite
and not symmetric? Indeed, then P is not necessarily symmetric. However, any of these
non-symmetric cost matrices lead to a quadratic form which can always be parametrized by
a symmetric matrix since x>Qx = 1

2x
>(Q + Q>)x. Thus, no new pairs of (K?, L?), in the

sense of Lemma 3-2.9, are introduced. Finding this symmetric representation is however not
even needed, one can simply alter the Riccati equation, which becomes a bit more involved.
The point is, we can assume without loss of generality that Q and R are symmetric.

Someone might say, given a Â, we just saw that we cannot easily create any desirable A,
but what if we have some clever “worst-case” identification algorithm which selects Â such
that the worst-case model is A? Well, due to the relation between Â and A?(γ), as just
examined, it follows that the set of Â obeying this requirement is of measure zero, putting
rather impossible requirements on the identification algorithm.

This section assumed that D = In, which is the most natural setting when one has no
further information about the structure of the uncertainty. IncludingD in the system-theoretic
framework as an optimization variable is an interesting future problem.

Item (iii) from Lemma 3-3.3 has yet another different implication. Say, someone wonders
if the unknown perturbation ∆A in xk+1 = (Â + ∆A + BK)xk, x0 ∼ P(0,Σ0) could have
been generated by a game theoretic adversary? Gather the data of E episodes, individually

32Recall (cf. [PW98]), we can define a dynamical system by the tuple Σ := (T,W,B), where the behaviour
B ⊂ WT := {f : f : T → W}, e.g. in the case of discrete LTI systems the behaviour is defined by T := Z≥0
and some transition matrix Ac` giving rise to sequences (the behaviour) the system can attain.

33On a more intuitive level in the context of GANs [GPM+14], where game theory is heavily used, this would
imply that if one wants to generate pictures of animals, the algorithm only gives you pictures of sausage dogs.
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running for N timesteps, i.e., {x(e)
k }Nk=0, e = 1, . . . , E. Then a simple necessary condition

for this data to be generated by a dynamic game, or worst-case uncertainty in A, is that the
convex34 program

inf
T∈Sn++

1
EN

E∑
e=1

N−1∑
k=0

∥∥∥x(e)
k+1 − TÂx

(e)
k −BKx

(e)
k

∥∥∥2

2

attains a cost arbitrary35 close to 0. Note, this condition does not depend on γ, making it
very easy to check in practice.

3-4 Analytical and Numerical Experiments

In this section we provide ample analytic and numerical examples, showing, for the better or
worse, the rich structure this basic game theoretic formulation already displays.

3-4-1 Computational Remarks, Given γ, Find δ

The main computational question is twofold, given a γ ∈ R≥0, (i) does there exist a δ ∈ R≥0 :
h(δ) = γ and (ii), if so, how to find it? Regarding question (i), by monotonicity it suffices to
find a upper bounding γ and show that γ ≤ γ (see section 3-4-2-2 for limiting behaviour of
the map h, which can be finite).
This can be done by finding an upper bound to δ. The idea is that since P (δ) � P (0) the
solution to

sup
δ∈R≥0

δ

subject to δ−1Id − αD>P (0)D � 0
(3-4.1)

upper bounds δ. Recall that with P (0) we mean the stabilizing solution to the standard dis-
counted Algebraic Riccati Equation. Since (

√
αA,B,C) should be a minimal realization (see

Lemma 3-2.9), P (0) exists, such that the solution to (3-4.1) is given by δ? = ‖αD>P (0)D‖−1
2 .

Of course, for a meaningful bound we must assume that DP (0) 6= 0. Also, δ? is not neces-
sarily feasible (see Figure 3-9 (1)). The crux is, we can come arbitrary close to δ by using
bisection, which also yields a bound on γ. Then by applying bisection again, we can solve
the problem, or conclude infeasibility. So, to solve any of our robust LQR problems we have
a slow, yet tractable, procedure as summarized in Figure 3-9.
Regarding question (ii), as already mentioned, the properties of the map h allow for bisection
algorithms indeed, but when one has more insights in the shape of h its image, convergence
can be much faster.

34Recall that we can formulate infA∈Rn×n ‖A−A′‖2
F as

inf
A∈Rn×n,B∈Sn

+

Tr(B)

s.t.
(

I (A−A′)
(A−A′)> B

)
� 0

. So indeed, we can easily impose the constraint T � 0.
35Demanding the cost to be identically 0 can of course be numerically challenging in practice, i.e., needing

perfect state measurements.
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Figure 3-9: Let us be given a Robust LQR problem for some γ. First (1), compute δ? from
(3-4.1) and find δ using any algorithm similar to bisection. As a byproduct, γ is given such that
feasibility of γ can be readily checked. Note that in practice one rather wants to find δ from
below, i.e. find some δ being ε-close to δ (denoted δε), such that δ − δε = ε > 0, guaranteeing
feasibility of the corresponding dynamic game related to δε, leading to the bound γε ≤ γ. Then
secondly (2), using {0, δε} as starting pair, one can apply any algorithm similar to bisection to
find δ : h(δ) = γ for γ ≤ γε.

Lemma 3-4.1 (Finding δ). Given a desired γ and assume it is feasible in the sense of Theorem
3-2.4. Let the (local) Lipschitz constant of the map h be L > 0 on [0, δ) and select β ≤ L−1.
Then, the algorithm

δk+1 = δk + β
(
γ − h(δk)

)
, δ0 = 0, (3-4.2)

converges to δ : h(δ) = γ at a linear rate proportional to the estimation error of L.

Proof of Lemma 3-4.1. Consider the algorithm

δk+1 = δk + βk
(
γ − h(δk)

)
, δ0 = 0. (3-4.3)

To find a suitable sequence of stepsizes {βk}k∈N define the error ek := δ− δk and consider the
Lyapunov candidate Vk = e2

k. Then we need to find βk such that Vk − Vk+1 > 0 for non-zero
errors. It can be easily seen that a satisfactory constraint on βk is

βk <
2(δ − δk)
γ − h(δk)

.

Since the map h is (locally) smooth, it is definitely locally Lipschitz, i.e., we have for some
constant L > 0

|h(δ2)− h(δ1)| ≤ L|δ2 − δ1|, δ1, δ2 ∈ [0, δ). (3-4.4)

Therefore, by (3-4.4) and monotonicity of h, the constraint on βk can be simplified to βk < 2/L
∀k. Therefore, simply setting βk = L−1 works. Note that we have not yet provided a method
to compute L, thus the constant must estimated, denote this by L̂ for which L̂ ≥ L must
hold. The error dynamics are given by ek+1 = ek − L̂−1(γ − h(δk)

)
= (1 − ε)ek, for some

ε ∈ (0, 1] such that, the cruder L̂ is, the smaller ε and thus the slower ek+1 → 0.

In the light of figures 3-10a and 3-10b we do emphasize that estimation of the Lipschitz
constant is critical the closer δ : h(δ) = γ is to δ.

At last, we make a brief remark on how the Generalized Algebraic Riccati Equation can be
solved.
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3-4-1-1 Solving the Generalized Algebraic Riccati Equation (GARE)

There are several methods to obtain the minimal solution to the GARE (3-2.17), but a
particularly simple method is to iteratively compute

Pk+1(δ) = Q+ αÂ>Pk(δ)
(
Λ(δ)

)−1
Â, P0 = Q. (3-4.5)

until ‖Pk+1(δ) − Pk(δ)‖p ≤ εP
36 for some εP > 0. Of course, (3-4.5) only converges under

certain conditions, as expressed in Lemma 3-2.9. Moreover, although (3-4.5) is simple, it
is not straight forward to find a εP which implies that the corresponding Pk+1 will lead to
a
√
α-stable controller, since theoretically one needs P∞ = limk→∞ Pk+1 instead of PM<∞.

Different methods to solve the GARE exist, but it is not clear to the authors which method is
superior, possibly as function of the problem size. For more information, see [SW94, BB95].

3-4-2 Scalar Examples

Here we study a few scalar examples to provide more insights in the structure of the control
law, limits of the map h and a small hint at the existence of concentration inequalities.

3-4-2-1 Scalar Control Gains

In the first part we compare the full admissible intervals of uncertainties in the system matrix
A, for LQR and RLQR scalar control gains. Although these scalar systems have closed-form
solutions, it will be shown they are by no means simple and elegant. Consider the (nominal)
optimal control problem:

inf
k∈R
J (1 + k, 1 + k2)

for α = σ0 = σv = 0.537. For this simple problem the positive solution to the corresponding
Riccati equation is p =

√
2 and the optimal control gain is given by k?(0) = 1−

√
2. Thereby,

the closed-loop mean of xk+1 is given by (2 −
√

2)xk, which is
√
α-stable. Moreover, when

considering only the system matrix, this controller can stabilize all the uncertainties ∆a ∈
(−2,−2 + 2

√
2). At last we compute the LQ cost as a function of the control gain and the

nominal system matrix (k, â), which is given by

J (â+ k, 1 + k2) = 1 + k2

1− 1
2(â+ k)2 =⇒ J

(
â+ k?(0), 1 +

(
k?(0)

)2) = 2(2−
√

2)
1− 1

2(â+ 1−
√

2)2 .

Thus, positive perturbations to â = 1, increase J exponentially fast.

The next part shows that the robust control framework anticipates on this last observation.
Consider the dynamic game

inf
k∈R

sup
`∈R
J (1 + k + `, 1 + k2 − δ−1`2) (3-4.6)

36Or until some relative error is small.
37To keep the notation simple and in line with the previous sections we will refer to σv as the variance of v

instead of the more common σ2
v notation.
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for again α = σ0 = σv = 0.5. A series of algebraic manipulations reveal that the minimal
solution to the GARE is given by the root:

p(δ) =
−1

2δ +
√

2− 2δ + 1
4δ

2

1− δ . (3-4.7)

See that limδ↓0 p(δ) =
√

2 indeed and that δ = 1 since for δ → 1 we have δ−1 − αp(δ) → 0.
Also when we consider the worst-case closed-loop matrix ac`(δ) = λ−1(δ)â = (1 − 1/4δ +
1/2

√
2− 2δ + 1/4δ2)−1, it can again be observed that limδ↓0 ac`(δ) = (1 + 1/2

√
2) = 2−

√
2

indeed. Then at last, the controller as parametrized by δ is given by

k(δ) = −
−1

2δ +
√

2− 2δ + 1
4δ

2

(1− δ)
(
2− 1

2δ +
√

2− 2δ + 1
4δ

2
)

such that again limδ↓0 k(δ) = −
√

2(2 +
√

2)−1 = 1 −
√

2. Obviously, this controller can
stabilize the additive uncertainties ∆a ∈ (−1− k(δ)−

√
2,−1− k(δ) +

√
2). To see how this

set behaves under δ ∈ [0, δ) we compute limδ↑δ k(δ) = −1. This limiting controller can be
interpreted as the most pessimistic, assuming big trouble, the most safe location is to render
the nominal closed-loop system matrix 0.

Then similar to the controller, we can find a closed-form expression for the worst-case distur-
bance

`(δ) =
−1

2δ
2 + δ

√
2− 2δ + 1

4δ
2

(1− δ)
(
2− 1

2δ +
√

2− 2δ + 1
4δ

2
) . (3-4.8)

Again, the limiting cases are interesting, by expansion we find that limδ↓0 `(δ) = 0 and
limδ↑δ `(δ) = 1. Of course, since â = 1, positive perturbations are the cheapest method to
destabilize the system, you pay for the perturbation.

Finally, given all these expressions, we can find the closed-form solution to the discrete-time
Lyapunov equation, which is simply σx(δ) =

(
1 − αa2

cl(δ)
)−1. This allows for plotting the

map h(δ) = `2(δ)σx(δ). The graph of
(
δ ∈ (0, 1), h(δ)

)
is shown in Figure 3-10a. We observe

strictly monotonic and smooth behaviour, but also a clear limit: limδ↑1 h(δ) = 2, which is
hardly a surprise when looking at (3-4.7). To further study the map h(δ) we can look at its
closed-form expression:

h(δ) = δ3

(δ − 1)2(δ − 4) + 4δ2(4− 3δ)
(δ − 1)2(δ − 4)

(
(δ − 4)

√
δ2 − 8δ + 8− δ2 + 8δ − 8

) . (3-4.9)

We observe from (3-4.9) that, as seen before, h(1) is not well defined, plus for δ > 4− 1
2
√

32 > 1
the expression becomes complex-valued. So, even for such a simple dynamical system the
expression for h(δ) is very involved and the authors do not know of a local inverse. Therefore,
algorithms like presented in Lemma 3-4.1 are rather a necessity.

Now it might seem odd that limδ↑δ h(δ) can have a finite limit since h̃(δ) from (3-2.5) cannot.
This observation can however be justified.
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(a) Given the parameters from section 3-4-2-1 we
show the map h(δ) over (0, 1), which is indeed
smooth, monotone and apparently bounded.

(b) Adjusting the parameters from section 3-4-2-
1 to â = 0.5 and q = 0.25 we observe different
limiting behaviour (unbounded).

Figure 3-10: The map h from Theorem 3-2.4 can have finite or infinite limiting values when
approaching the breakdown point δ.

3-4-2-2 Limits of the Map h

In the previous section it was observed that limδ↑δ h(δ) = 2. More formally, instead of looking
at (3-4.9), which is quite involved, we look at the definition of h(δ). Then, limδ↑δ h(δ) =
`2(δ)

(
1−αa2

cl(δ)
)−1 = 2 since α = 0.5, limδ↑δ `(δ) = 1 and limδ↑δ ac`(δ) = 1. Thus, we see that

although problem (2-1.2) is well-defined for all γ ∈ R≥0, once γ > 2 then the corresponding
RLQR problem to the game (3-4.6) is not well-defined in our solution framework.

What is the interpretation of this limiting value, and does it always exist? One might expect
that once you approach δ the closed-loop spectrum approaches the boundary of Dα−1/2 from
inside. As formally proven in section 3.8 of [BB95] for a closely related H∞ problem, if the
limiting controller limδ↑δK

?(δ) exists, then the nominal closed-loop system is bounded-input
bounded-state (BIBS) stable. However, we cannot conclude anything regarding the worst-
case closed-loop system, which is precisely the term we use in the definition of h(δ). Therefore
it seems hard to say anything about limδ↑δ h(δ).

To emphasize this, we update example system (3-4.6) to an example like proposed on page 93
of [BB95], and simply change â to 0.5 and q to 0.25. Now we can again plot h(δ) (see Figure
3-10b). Indeed, this time limδ↑δ h(δ) = ∞, which can be explained from the fact that the
worst-case closed-loop system converges to α−1/2, thus becoming unstable in the

√
α-sense.

This should be contrasted with 3-4-2-1, where the limiting worst-case closed-loop system was
strictly

√
α-stable.

So, to understand the limit, we could just investigate the limiting spectral radius of the
worst-case closed-loop system: limδ↑δ ρ

(
Λ−1(δ)A

)
. We will implicitly do this by looking (semi-

formally) at the boundedness of the worst-case cost.

First, it is easy to see that δ−1Id − αD>PD � 0 is a necessary condition for a dynamic
game to be well-defined (bounded cost). For example, consider solving the robust Bellman
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(or Isaacs) equation

V (x) = inf
u

sup
w

(
x>Qx+ u>Ru− δ−1w>w + α E

x0,v

[
V (x′)|x

])
.

To solve this equation, assume that V (x) = x>Px+ q, then we find

x>Px+ s = inf
u

sup
w

xw
u


>Q+ αA>PA αA>PD αA>PB

αD>PA −δ−1Id + αD>PD αD>PB
αB>PA αB>PD R+ αB>PB


xw
u

 ,
(3-4.10)

for s the part containing q. A necessary condition to keep the right-hand side of (3-4.10)
bounded under extremization over w is that δ−1Id − αD>PD � 0 holds. This conditions
gives rise to an interval of valid δ, specifically, δ ∈ [0, δ], for δ the “breakdown point” (see
section 3-2-2). A sufficient condition would follow from making the inequality strict, i.e.
δ ∈ [0, δ). Thus, the most interesting value for δ is this breakdown point δ, what happens
over there? To answer this question, interpret the inner maximization of (3-4.10) as a QP for
some J � 0 and H = H>:

argmax
w

(
z
w

)>(
G H
H> J

)(
z
w

)
= argmax

w
w>Jw + 2z>Hw. (3-4.11)

Then another condition (in combination with J � 0 necessary and sufficient) for (3-4.11) to
have a bounded cost is that Jw? = −H>z38. When written in the notation of (3-4.10), with
additionally the dependence of P on δ, this becomes:(

− δ−1Id + αD>P (δ)D
)
w?k = −αD>P (δ)(Axk +Buk).

First of all, spot the link with (3-2.13) from Theorem 3-2.4. We know that the optimizing
input will be u?k = K?(δ)xk and w?k = L?(δ)xk such that the question becomes: “Does

lim
δ↑δ

(
− δ−1Id + αD>P (δ)D

)
L?(δ)xk = lim

δ↑δ
−αD>P (δ)

(
A+BK?(δ)

)
xk (3-4.12)

hold?” The crux is that the left-hand side might lower its rank at δ. Now consider again the
example from 3-4-2-1, indeed, there we had limδ↑δ

(
a + bk?(δ)

)
= 0 and in fact both sides of

(3-4.12) converge to 0 such that even at the breakdown point the cost is bounded. However,
for the other example, with a = 0.5 and q = 0.25 this conditions fails and the cost becomes
unbounded. So if (3-4.12) is satisfied, player 1 cannot be fooled. In other words, to get
limδ↑δ h(δ) =∞ the cost must approach ∞ since h(δ) is a function of Σx := E

x0,v

∑∞
k=0 xkx

>
k .

However, we see that we can relate the question of unboundedness to a degenerate QP being
a function of δ, the cost matrices (Q,R) but also of the dynamical system Σ (2-1.1). It turns
out that some problem parameters maintain a well-defined QP, even for δ → δ such that
the cost becomes unbounded, not at δ, but beyond δ, making limδ↑δ h(δ) < ∞. This has an
important implication, namely that although K?(γ) might exist for all γ ∈ R≥0 we cannot

38See appendix B-1, or consider the QP: infx 1
2x
>Qx + r>x for Q =

(
1 0
0 0

)
� 0 and two options of r,

r>1 =
(
1 0

)
, r2 =

(
0 1

)
. Under r2 the cost is unbounded, while under r1 we have x? = −r1 and indeed

Qx? = −r1. In our context both Q and r are parametrized by δ, the cost matrices and the dynamics.
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always find it via our game theoretic framework. We are restricted to γ ∈ [0, γ), γ := h(δ)
which might coincide with R≥0, but not for each problem. Schematically, one can think of
Figure 3-11, if γ < ∞ then in the current framework we cannot utilize the full potential of
linear control, we never hedge against the full set some K can

√
α-stabilize. Moreover, this

implies that if limδ↑δK
?(δ) stabilizes (A,B) then we cannot be sure that this pair is part of

our uncertainty set.

Figure 3-11: Although �γ→∞
(
Â + BK?(γ)

)
is well-defined, Theorem 3-2.4 only gives us a

controller which can provably
√
α-stabilize the set �γ→γ

(
Â+BK?(γ)

)
, which is equal or smaller.

Now, one can derive all sorts of conditions from (3-4.12), we do not embark on this and
refer the reader to a somewhat similar discussion, but then for the entropy interpretation, see
[HS07, ch.8].

3-4-2-3 Uncertainty Sets

To efficiently start the discussion scalar uncertainty sets, we first consider a generic example.

Example 3-4.2 (1D Aγ). Consider a 1D version of Aγ where d = 1, α ∈ (0, 1) and â is
√
α-

stable, plus, without loss of generality we simplify the Lyapunov equation to σx = αa2
c`σx +w,

w > 0, ac` = â + ∆a. Then it follows that the feasible uncertainties ∆a are parametrized by
the map f1 : R→ R:

�γ(â) =
{

∆a ∈ R : −(1 + αγ/w)∆2
a − 2α(γ/w)â∆a + (γ/w)(1− αâ2) = f1(∆a) ≥ 0.

}
.

Here, the constraint 1 − α(â2 + 2â∆a + ∆2
a) = f2(∆a) > 0 is implicit. Since both f1 and f2

have ∂2fi < 0 we can purely focus on their respective roots since they define the endpoints
of the feasible connected interval �γ(â). The function f2 relates to

√
α-stability such that its

feasible interval is given by (−α−1/2 − â, α−1/2 − â) ⊇ �γ(â). The roots of f1 are given by

∆(1,2)
a (γ,w, â, α) = (γ/w)αâ±

√
(γ/w)(1 + αγ/w − αâ2)
−(1 + αγ/w) . (3-4.13)
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Here we impose the order ∆(1)
a ≤ ∆(2)

a . It can be observed that the ratio γ/w determines if
∆(1,2)
a is real- or complex-valued, which happens when αâ2 > 1+αγ/w. Now by construction39

of (f1, f2) we have [∆(1)
a ,∆(2)

a ] ∈ (−α−1/2 − â, α−1/2 − â) such that ∆(1,2)
a completely defines

Aγ(â). Furthermore, as expected limγ→∞∆(1,2)
a = −â ± α−1/2. Moreover, Vol(Aγ(â)) =

2
√

(γ/w)(1 + αγ/w − αâ2)(1 + αγ/w)−1 such that limγ→∞Vol(Aγ(â)) = 2α−1/2.

Now instead of the entire set of admissible uncertainties for some controller k(δ), we will
compute �γ

(
â+ bk?(δ)

)
, which is the uncertainty we can provably hedge against via Theorem

3-2.4. To that end, consider the scalar robust LQR problem:

inf
k∈R

sup
a+k∈Aγ(1+k)

J (a+ k, 1 + k2) . (3-4.14)

Let (α, σ0, σv) be such that this optimization problem directly relates to the game (3-4.6),
therefore γ ∈ [0, 2). Section 3-4-2-1 provides us with expressions for

(
p(δ), k(δ), `(δ), h(δ)

)
.

Then to construct the uncertainty set �γ
(
1 + k(γ)

)
we use (3-4.13) and obtain the boundary

points:

∆(1,2)
a (γ) =

1
2γ
(
1 + k(γ)

)
±
√
γ
[
1 + 1

2γ −
1
2
(
1 + k(γ)

)2]
−(1 + 1

2γ)
. (3-4.15)

Of course, instead of working with γ, we can work with δ directly via γ = h(δ) and (3-4.9).
Then in Figure 3-12a we plot the interval

(
â + ∆(1)

a (γ), â + ∆(2)
a (γ)

)
of admissible systems

for γ ∈ [0, 2) and â = 1. In Figure 3-12b the set is parametrized directly by δ. Indeed,
we observe the limiting case limδ↑δ ∆(1,2)

a (γ) = ±1. It is interesting to spot the difference
between the two parametrizations, this can be explained from the exponential behaviour seen
in Figure 3-10a. The figure indicates that exponentially fast updating schemes for γ result
in approximately linear growth of the uncertainty set. Also, as predicted, it turns out that
right-most line (â+ ∆(2)

a (γ)) corresponds to the worst-case uncertainties (increasing a is the
cheapest). Moreover, to emphasize how our set grows over γ, we show the full set of possible
models a which can be stabilized with k(γ) (see k(γ) ±

√
2). See that for this particular

example we do not converge to this boundary, which relates to our prior discussion on limits
(see section 3-4-2-2) and indeed is an example of Figure 3-11.

3-4-2-4 Remarks on Model Concentration Bounds

Consider a scalar linear dynamical system and assume that someone is given b = 1, but is
unsure about a. It is only known that (a, b) can be stabilized by k(i)(γ) := limδ↑δ k

(i)(δ).
Define the set K(i)

α := {a ∈ R : |a + k(i)(γ)| < α−1/2} such that a ∈ K(i)
α . Then recall

the our controlled uncertainty sets are nested (see Lemma 3-2.6), such that the set �γ under
k(i)(γ) is the largest set we can provably hedge against. Now, given some nominal â, we can
compute the probability, as a function of γ, that our system with unknown a can be provably
stabilized via Theorem 3-2.4

P {a+ k(γ) ∈ Aγ(â+ k(γ)} (γ) :=
Vol

(
Aγ
(
â+ k(γ)

)
∩ Kα

)
Vol(Kα) (γ) =

√
α

2 Vol
(
Aγ
(
â+ k(γ)

))
(γ).

(3-4.16)
39f1 follows from ∆2

a ≤ γ/w(1− a2 − 2a∆a −∆2
a) subject to f2(∆a) > 0.
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(a) The set â+ �γ over γ ∈ [0, 2). (b) The set â+ �γ parameterized by δ

Figure 3-12: Given the parameters from section 3-4-2-3, we show the admissible system matrices
a for program (3-4.14), parametrized by either γ or δ.

.

Example 3-4.2 give us the expression to compute (3-4.16). We do this for the case where
(â, q) = (1, 1), defining controller k(1)(γ), and for the case where (â, q) = (0.5, 0.25), defining
controller k(2)(γ). Computing the limits provide us with fundamental probabilistic bounds.
First, for k(1)(γ) we know that γ = 2 such that:

lim
γ↑γ

√
α

2 Vol
(
Aγ
(
1 + k(1)(γ)

))
(γ) =

√
α < 1.

Thus, when it is only known that a ∈ K(1)
α , our framework can never provide higher proba-

bilistic bounds than
√
α, α ∈ (0, 1). For the second controller this is different since γ = ∞

and

lim
γ→∞

√
α

2 Vol
(
Aγ
(
0.5 + k(2)(γ)

))
(γ) = 1.

Of course, these limits are implications of our discussion in section 3-4-2-2. For both controlled
systems we can plot (3-4.16), which is done in Figure 3-13. Here we observe the theoretical
limit under k(1), but overall log-normal behaviour.

Note that this logarithmic scale was already presented subconsciously in for example Figure
3-2a. Moreover, this behaviour can be expected from the close relation to the following
problem. Given some σ ∈ R>0 we can consider a LQ problem with exponential cost (3-4.17),
or exponential utility function if you like. It turns out that this problem is closely related to
a special40 LQR problem:

40The idea is that Certainty Equivalence control laws (sometimes rightfully called Naive Feedback Controllers
(sec. 5.4 [Ber76])), like standard LQR, neglect the noise intensity, whereas the LEQR formulation (3-4.17)
tries to take this covariance directly into account.
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Figure 3-13: The function (3-4.16) of γ for the examples in section 3-4-2-4. Here, c(1)(γ) :=
P
{
a+ k(1)(γ) ∈ Aγ(1 + k(1)(γ)

}
(γ) and c(2)(γ) := P

{
a+ k(2)(γ) ∈ Aγ(0.5 + k(2)(γ)

}
(γ).

Note that formally speaking these are not per se CDFs since
∫
R≥0

c(1)(γ)dγ < 1.

inf
{uk}k∈N

2
σ

logE
[
exp

(
1
2σ

∞∑
k=0

αk
(
x>k Qxk + u>k Ruk

))]

s.t. xk+1 = Axk +Buk +Dξk, ξk
i.i.d.∼ N (0,Σ−1

ξ ).
(3-4.17)

Problem (3-4.17) is the discounted infinite horizon version of the problem pioneered by Jacob-
son [Jac73]. He was the first to observe that when Σ−1

ξ = Id and σ = δ then the minimizing
input in (3-4.17) is precisely the feedback in a dynamic game, and thus it equals (3-2.10).
With this link in mind it is clear that increasing δ at a linear rate, entails increasing the
uncertainty set exponentially fast, like is seen in Figure 3-12b. In its turn, this explains the
exponential relation as seen in Figure 3-10, thereby the behaviour as seen in Figure 3-12a.
This more logarithmic growth is then further observed in Figure 3-13 and 3-14a indeed.

3-4-2-5 Towards Topologically Equivalent Drift Terms

It can be argued that an ideal identification routine establishes in which topological class the
unknown system lives, whereafter a robust controller hedges against a certain subset of those
models. Remember, we should not fit a damper to a spring. We saw in Lemma 3-3.3 that at
least orientation is preserved. Can we do more?

Consider the program (3-4.14) and let the uncertainty fully act in a, but then for â = 0.5 and
q = 0.25, i.e.,

inf
k∈R

sup
a+k∈Aγ(0.5+k)

J (a+ k, 0.25 + k2) (3-4.18)

with maximizing solution a?c`(γ) := a?(γ) + k?(γ) for the worst-case drift: a?(γ) = â +
∆?
a(γ). Since âx is part of the structurally stable41 set {f(x) : f(x) = sx, s ∈ (0, 1)} it is
41Let f be a linear endomorphism. Then f is structurally stable if and only if there is a neighbourhood U

of f such that g t∼ f ∀g ∈ U . So, a marginally stable system is not structurally stable.
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hypothesized that there is a γ > 0 such that the solutions of (3-4.18)

inf
k∈R

sup
a+k∈Aγ(0.5+k)

s.t.

J (a+ k, 0.25 + k2)

âx
t∼ ax

(3-4.19)

and (3-4.19) are equivalent.

In Figure 3-14a we show that for γ <
√

2−1 our hypothesis is true. Note that this is different
from simply using the definition of structural stability, we quantify the neighbourhood and
optimize over it.

In principle, for these kind of scalar systems we can omit graphical methods and instead derive
a sufficient condition on γ to assert topological equivalence between the nominal- and worst-
case drift. Let us consider the system corresponding to (3-4.18) and let p(δ) be the stabilizing
solution to the GARE. Then first we want a bound on δ such that â+αδdp(δ)

(
λ(δ)

)−1
â < 1.

However, since we know that
(
λ(δ)

)−1
â < 1/

√
α ∀ δ ∈ [0, δ) ⊂ R≥0, we get, after plugging in

the problem parameters, the following bound on δ:

δ <
1− â√
αdp(δ) ⇐⇒ δ <

−
(√

2
(
19− 8

√
2
)1/2

+ 3
√

2− 2
)

(
√

2− 4)
≈ 2.38. (3-4.20)

Since the map h is monotone, we can easily translate (3-4.20) to a bound on γ.

Indeed, in the context of periodic orbits or volume-preserving maps (Â ∈ SL(n,R)) we recover
the standard lack of structural stability. From the analysis in section 3-3 we see that if
Â ∈ SL(n,R) then A?(γ) ∈ SL(n,R) only for the pathological case of P (δ) = 0n×n due to the
structure of T ∈ Sn++, even when Â is hyperbolic.

Extending the ideas of this section to a higher dimensional setting is an interesting open
problem.

3-4-2-6 Uncertainty in a and b

Using the ideas set forth in section 3-2-1 we reconsider program (3-4.14) and construct an
uncertainty set for both a and b. To that end we use (3-2.14) with â = b̂ = 1 and consider
the program

inf
k∈R

sup
(a,b)∈Uγ((1,1);k)

J (a+ bk, 1 + k2).

To illustrate how Uγ looks like, pick the upper-bounding radius γ = 2. Section 3-4-2-3 told
us that γ = 2 corresponds to ∆ac` ∈ [−1, 1] and section 3-4-2-1 showed that k?(γ = 2) = −1.
Therefore, we have

Uγ=2(
(
1, 1),−1

)
=
{

(∆a,∆b) ∈ R2 : ∆b = ∆a − z, z ∈ [−1, 1]
}
. (3-4.21)

A compact subset of the unbounded set (3-4.21) is shown in Figure 3-14b.
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(a) The maximizing solution of (3-4.18) as a func-
tion of γ, with the same behaviour as Figure 3-13.

(b) A compact subset of (3-4.21), which can
thought of as a fat hyperplane.

3-4-3 Worst-Case models

Although section 3-3-1 showed that controllers resulting from (3-1.2) are generally conserva-
tive, the framework has another application regardless. Namely, in this section we show what
one can do with Proposition 3-2.3. For visualization purposes, we start with a 2-dimensional
state-space example with an uncertainty only in the system matrix A.

Consider the controllable pair (Â, B) and the structural matrix D defined as

Â =
(

1.2 0.5
0 1.2

)
, B =

(
0
1

)
, D =

(
1
1

)
. (3-4.22)

Also define the covariance matrices Σv = 0.1I2, Σ0 = I2, the cost matrices Q = 0.1I2, R = 10,
and the discount factor α = 0.95.

Then, set K to the nominal discounted LQ regulator42, i.e., K = K?(0). Now, Figure 3-15a
depicts the level sets of �γ

(
Â + BK?(0)

)
as defined by Definition 3-1.1 for different levels

γ ∈ Γ := {0.005, 0.03, 0.09, 0.4, 1}43. We further solve the worst-case model uncertainty
problem (3-2.2). The solutions to the worst-case model uncertainty for different γ, denoted
by ∆?

A(δ), are proposed by Proposition 3-2.3. Let us recall that the mapping h̃ defined in
(3-2.5) provides the relation γ = h̃(δ) between the different values of γ. In this example, the
corresponding δ are 10−3 · {2, 3.9, 5.5, 7.3, 7.7}. The locations of these worst-case models are
marked by a star symbol in Figure 3-15a.

Looking at the cost in Figure 3-15a anyone would have guessed where these worst-case un-
certainties might reside. However, now imagine having a high-dimensional problem (see the
next section) for which the critical part of a dynamical system is not that easy to observe,
then Proposition 3-2.3 might help.

42K = −α(R+αB>PB)−1B>PÂ for P = Q+αÂ>PÂ−α2Â>PB(R+αB>PB)−1B>PÂ or equivalently
P = Qc` + αA>c`PAc`.

43γ = 0 would yield 0 since the covariance matrices are full-rank, implying Σx � 0.
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(a) For γ ∈ Γ, the sets �γ
(
Â+BK?(0)

)
with the

corresponding worst-case path, including a projec-
tion on the cost surface.

(b) Comparison of the uncertainty hedged against
for the nominal-, K?(0), and robust controller
K?(1), i.e. �γ=1 under both types of controller.

Figure 3-15: Given the parameters from section 3-4-3 we show the worst-case uncertainties
via Proposition 3-2.3 plus how our robust controller anticipates on where the cost increases the
sharpest.

At last, it is interesting to see what a robust controller K?(γ) would do, for say, γ5 = 1. See
Figure 3-15b for the corresponding sets �γ=1 under both types of controller. When compared
with Figure 3-15a we clearly see that the robust controller anticipates on where the troubles
might occur, i.e., the set is extended in the direction of the worst-case path.

3-4-3-1 Vector-Field Interpretation

In the previous part we fixed Â, while in practice this matrix might vary based on incoming
data. The aim of this section is to show how the worst-case system matrix uncertainty depends
on its center Â.
Consider for (x, y) ∈ [−5, 5]2 the pair (Â, B) and the structural matrix D defined as

Â(x, y) =
(
x y
0 0

)
, B =

(
0
1

)
, D =

(
1
0

)
. (3-4.23)

Again, also define the covariance matrices Σv = 0.1I2, Σ0 = I2, the cost matrices Q = I2,
R = 1, and the discount factor α = 0.95. Now, we solve ∆?

A(δ = 10−3) for each grid-
point (x, y) and show the emanating vector (from the first row of Â towards the first row
of A?(δ)). This is done in Figure 3-16, where it should be remarked that the arrows solely
visualize direction, not tangent vectors of some flow. Around y = 0, we lose control, hence
no arrows are drawn. More interestingly, see that the vector field is reminiscent of ż = z,
(x, y) =: z ∈ R2, always pointed away from 0. This follows readily from Lemma 3-3.3 since in
this particular case, although D 6= In, both x and y preserve their sign under being mapped
to the worst-case model since

A?(δ) '
[
I2 +

(
c 0
0 0

)
Y

](
x y
0 0

)
, c ∈ R>0, Y ∈ Sn+,
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and the diagonal elements of a symmetric positive semi-definite matrix are non-negative
themselves. This has of course practical implications. For example, in Figure 3-16b we show
1000 Least-Squares estimates44 for z? := (x, y) = (1.5, 0.5), with the main observation being
that indeed the estimates form an ellipsoidal set around this point. Locally, the vector-field
is clearly pointing in one direction, which means that if your estimate is for example in
the shaded half-space, then the robust control scheme is likely to be ineffective (compare
to Figure 3-7). In Figure 3-19a we show that there are indeed a few trajectories where
the robust controllers improves performance compared to K?(0), imagine being in the left
halfspace of Figure 3-16b, moving towards (1.5, 0.5). Nevertheless, on average the performance
deteriorates. As will be shown in section 3-4-4, there are systems for which the Least-Squares
estimates are, on average, adequate.

(a) (b)

Figure 3-16: (A) Vector-field corresponding to section 3-4-3-1. (B) Zoomed-in version of Figure
3-16a, together with 1000 Least-Squares estimates of Â(1.5, 0.5).

So far we have only considered low-dimensional examples, the reason being analytical in-
sights and visualization. Computationally speaking nothing prohibits us from doing high
dimensional examples (on the order 1000-dimensional systems). To still visualize the matrix
structure, we continue with an example for n = 25.

3-4-3-2 Higher Dimensional Models

For illustration purposes, consider the discrete-time system xk+1 = Âxk + B̂uk + vk, x0 ∼
N (0, In), vk

i.i.d.∼ N (0, σ2
vIn) defined by n = 25, σv = 0.1 and the stabilizable pair (Â, B̂)

randomly drawn from an appropriately sized Gaussian distribution (see Figure 3-17a and
3-17b). Let Q = R = In, α = 0.95 and design a nominal LQ regulator K?(0) (see Figure
3-17c). Then for D = In we want to investigate limγ→∞∆?

Ac`
(γ), and its decomposition, from

Corollary 3-2.7. This will tell us where Â and B̂ are sensitive with respect to the LQ cost. In
Figure 3-17e and 3-17f we show the worst-case uncertainties for γ = 104. Both figures display
a clear structure, e.g., the effect of the 7th state on Â, which would have been difficult to

44We used the same procedure as in section 3-4-4, but with λ = 0, N = 10 and B being known.
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observe directly from Figures 3-17a and 3-17b. This should be contrasted with the previous
example, where we could observe the most sensitive part directly from (3-4.22). Moreover,
it is found that indeed a pair of complex closed-loop eigenvalues of approaches the boundary
of Dα−1/2 (compare Figure 3-17f with Figure 3-17i and see that the worst-case closed-loop
matrix clearly increases in norm.).

(a) Â (b) B̂ (c) K?(0)

(d) ∆?
A(γ) (e) ∆?

B(γ) (f) Â+ B̂K?(0)

(g) Â+ ∆?
A(γ) (h) B̂ + ∆?

B(γ) (i) A?c`(γ)

Figure 3-17: Matrices corresponding to section 3-4-3-2.

3-4-4 Data-Driven Example

Although section 3-3 indicated that our framework is most likely conservative, intuitively, it
is expected that the robustness coming from a game theoretic approach is useful when one
is pessimistic about an estimated model. In other words, the real system should be worse in
some sense, to be precise, with respect to the cost. In physical systems this occurs for example
when inertia is estimated too optimistically, say, when controlling a robotic arm using a model
with overestimated inertia. In an abstract setting one can think about marginally stable and
sparse models. An estimation scheme might fit stable or dense systems, giving the impression
that the controller can relax or has a lot of knobs at its disposal, while in fact, it does not.
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To put our framework to the test, we consider almost the same (n = 3)-dimensional model
(of the form (2-1.1)) as in section 4 of [DMM+18] with Σ0 = I3, Σv = 0.12I3, α = 0.95,
A = tridiag(0.01, 1.01, 1.01), B = I3, Q = I3, R = I3, and give some empirical evidence that
our framework can handle these kind of situations. First, we will do Z = 200 experiments,
for each experiment z, we let the controlled system run for N = 25 steps where we have set
u

(z)
k

i.i.d.∼ N
(
K?(0), 0.12I3

)45. The resulting data {x(z)
k , u

(z)
k }Nk=0 is the input to a regularized

(λ = 0.001) Least-Squares problem

(Â(z), B̂(z)) := argmin
A,B

N−1∑
k=0
‖x(z)

k+1 −Ax
(z)
k −Bu

(z)
k ‖

2
2 + λ‖A B‖2F

which yields an approximate model of the unknown pair (A,B). Since we have no further
structural information, D = I3.

Now the hope is that if we vary γ ∈ [0, γ), then at some “radius”, say γ̃, we start including
the real system in our uncertainty set, i.e.,

(
A+ BK(z)?(γ̃)

)
∈ Aγ̃

(
Â(z) + B̂(z)K(z)?(γ̃)

)
and

tame the real cost, while surpassing performance of K?(0). It is shown in Figure 3-18 that we
observe precisely this behaviour around γ = 0.08. When we however increase γ far beyond
10−1, the robust scheme becomes too conservative. We took in total 11 γ ∈ [0, 2.5] and
observed that for each value of γ there is 1 experiment where K?(γ) fails to

√
α-stabilize

the real system. For γ = 2.5, this value is increased to 3 experiments, the controller became
overly pessimistic. Removing the regularization does not change the result structurally, it
merely makes the dent less pronounced.

(a) Induced cost as a function of γ. (b) Zoomed-in version of Figure 3-18a.

Figure 3-18: For the simple Least-Squares procedure outlined in section 3-4-4, discard the best-
and worst 5% of the data. Let f? be the best achievable cost, let f(0) be the empirical mean
of the induced cost under K?(0) (not a function of γ, merely a reference line) and f(γ) the
empirical mean of the induced cost under K?(γ). The shaded area is simply the hull of all the
remaining 90% of data points.

This simple example highlights the potential of our method. Although it must be mentioned
that this behaviour is not generic, usually, the robust framework is a lot more conservative,

45The noise is added to force the input to become persistently exciting.
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in line with section 3-3. It is an interesting problem to see for which class of systems and
identification algorithms our setting can provably outperform a nominal controller. Towards
an answer we do a few more simulations and indeed find a well-defined class.
For example, looking back at Figure 3-16b, it is expected that some Â on the left side of the
hyperplane can give rise to robust controllers doing well on the real system, simply because in
that case, the worst-case system is more likely to be close to the real system. In Figure 3-19a
we show, for that particular example, 20 cost-trajectories as a function of γ and observe that
indeed for a few experiments, this is the case. Even more so, when we reconsider the setup
from section 3-4-4, where now B is known, then we get a similar result as in Figure 3-19a,
the “sweet-spot” disappeared (see Figure 3-19b).

(a) Given the example from section 3-4-3-1, we
show 20 cost-trajectories.

(b) The exact same experiment leading up to Fig-
ure 3-18, but with only A unknown.

Figure 3-19: When only A is partially unknown, the probability of improving performance under
the robust scheme is low. Here, f? is the best achievable cost, f(0) is the empirical mean of the
induced cost under K?(0) (not a function of γ, merely a reference line) and f(γ) is the empirical
mean of the induced cost under K?(γ).

Can this behaviour be explained? To that end we recall that in this section we have D = In
and that Lemma 3-3.3.(iv) pointed out that the worst-case model must be further away from
0 (in Frobenius-norm) than the nominal model. Also recall that from section 3-2-1 we know
that we can interpret the worst-case system in many was, e.g., (1) as A? = Â + ∆?

A, but
we can also think of ∆?

A as (2) ∆?
Ac`

= ∆?
A + ∆?

BK
?. This lead to the comparison made in

Figure 3-20, regardless of the interpretation of the uncertainty, ‖A‖F should be bigger than
‖Â‖F for it to be in the direction of a worst-case model and potentially improve out-of-sample
performance. In line with our hypothesis and Figure 3-18, as Figure 3-20 shows, when B is
also known, then the average gap is negative while it becomes positive once B is unknown as
well. Note, when B is known, this gap is not a function of γ, but constant; yet, this style is
chosen to keep the visualization consistent.

Biased Identification, more Regularization It appears from Figure 3-20 that for our frame-
work to perform well, we need to hope for ‖A‖F −‖Â(z)‖F ≥ 0. Of course, there is a heuristic
to enforce ‖Â‖F ≤ ‖A‖F : sufficiently increasing the `2-regularization parameter λ ∈ R≥0 to
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(a) The empirical mean is below 0. (b) The empirical mean is always above 0.

Figure 3-20: Given the parameters from section 3-4-4, let gA(γ) := Z−1∑Z
z=1 ‖A‖F −‖Â(z)‖F

and gA,B(γ) := Z−1∑Z
z=1 ‖A+

(
B − B̂(z))K(z)?(γ)‖F − ‖Â(z)‖F .

introduce a, for us favourable, bias, i.e., ‖Â|λ>0‖F ≤ ‖Â|λ=0‖F . However how to select λ?
Too small is useless and too big is as if we solve a completely different problem.

The result of increasing λ = 10−3 to λ = 10−1 is shown in Figure 3-21, and indeed, for a
sufficient increase in λ, our framework can still outperform the nominal controller, even when
B is known. A remark should be made, introducing (more) regularization does introduce
an offset and indeed a higher average nominal cost (and in some examples thereby a higher
probability to fail). Nevertheless, it is frequently used to provide some numerical stability
such that demanding λ > 0 is far from unrealistic (see Appendix B-5-1).

Selection of γ via a Holdout Method At last we make a brief digression in a possible
heuristic to select γ in practice, using a method referred to as holdout, which is the most
basic form of cross-validation. To that end, we split, for each z, the data {x(z)

k , u
(z)
k }Nk=0 into

training (NT ) and validation (NV ) data via N = NT +NV , with NT = rN , NV = (r − 1)N ,
r ∈ {0.5, 0.7, 0.9}. Just as before, we let B be known, make λ = 0 again and do 200
experiments for N ∈ {50, 70, 120, 190, 310}. Here, we compute Â(z) using the NT dataset and
compute a validation system matrix (Â(z)

V ) using the NV dataset. Next we design a robust
controller K(z)?(γ) based on (Â(z), B), for all γ ∈ 0.5 · {0, 10−5, 10−4, 10−3, 10−2, 10−1} =: Γ
and select the K(z)?(γ) which achieves the lowest cost on the validation system (i.e., under
Â

(z)
V ), denoted by K?

(
γ̂(z)) with γ̂(z) ∈ Γ. We call this cost our certificate and denote it by

Ĵ (z). Moreover, let J (z) be the cost (on the real system) induced by K?
(
γ̂(z)), which we

compare with J (z)
0 , the cost induced by K?(0) (the nominal control law, which also relies on

z). In Figure 3-22 we show how well this certificate helps us in selecting γ. Overall we see
that, as before, the robust scheme does not help in improving the cost with respect to the
nominal scheme, on average (recall Figure 3-7). Also, the more data we have to validate on,
the more likely we are to select γ̂(z) = 0; for r = 0.5 we select γ̂(z) = 0 half of the time. If we
re-introduce regularization and make λ = 10−1, then we observe that we can improve upon
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(a) For λ = 10−1 the “sweet-spot” reappeared. (b) The empirical mean is indeed above 0.

Figure 3-21: Given the parameters from section 3-4-4, let gA(γ) := Z−1∑Z
z=1 ‖A‖F −‖Â(z)‖F

and perform the exact same experiment leading up to Figure 3-18, but now with only A being
unknown and λ = 10−1 (Figure 3-19b used λ = 10−3). Here, f? is the best achievable cost, f(0)
is the empirical mean of the induced cost under K?(0) (not a function of γ, merely a reference
line) and f(γ) is the empirical mean of the induced cost under K?(γ).

the nominal cost by 1.15%; where we however select γ̂(z) = 0 for 75% of the time. Moreover,
when we set α = 0.999, such that

√
αA is unstable, the results are largely unchanged; the

improvement is at most 1.4%.

These are marginal improvements, yet based on heuristics, next we investigate the full po-
tential using an optimal selection method.

Optimal Selection of γ Finally, to upper-bound possible performance by the previous
holdout method, we select γ such that it achieves the smallest cost on the real system,
denoted γ(z)?, and compare that again to the nominal scenario. Here we will take N ∈
{25, 35, 60, 95, 155} (half the previous set) since that is where we expect potential improve-
ment. The results are shown in Figure 3-23 and are in line with all simulations before. In
fact, when B is known and λ = 0, then the optimal selection method outperforms the nominal
controller just slightly, for N = 20, the improvement is exactly 0.15% (J = 0.99985 · J0),
which decreases along N . Moreover, again in line with Figure 3-7, γ(z)? = 0 is selected for
more than 55% of the cases.

However, as before, we can consider some regularization. When we let λ = 10−1 then the
optimal selector can achieve up to 12% cost improvement with respect to the nominal control
law, see Figure 3-23c-3-23d. Indeed, here we select γ(z)? = 0 less than 7% of the time. Note,
we looked at a smaller range of N . Also, it is important to recall that we improve with respect
to K?(0) based on Â via regularized Least-Squares, we do not necessarily improve upon K?(0)
based on non-regularized Least-Squares. Similarly, we can make B unknown again. These
simulation results are shown in Figure 3-23e-3-23f. Here, the improvement is at most 2.7%
plus we select γ(z)? = 0 for more than 55% of the time. Just like before, it also not completely
understood why and when an uncertain B seems to help.
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(a) r = 0.9 (b) r = 0.9

(c) r = 0.7 (d) r = 0.7

(e) r = 0.5 (f) r = 0.5

Figure 3-22: Given the holdout method from section 3-4-4, we discard the data corresponding
to the top- and bottom 10% of the certificate cost (Ĵ ) and show the best achievable cost J ?,
the induced cost under K?(0): J0 and the induced cost under K?(γ̂): J , where γ̂ is selected
using a holdout method for several r. All thick lines represent the empirical mean over z.
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(a) Unknown A, λ = 0 (b) Unknown A, λ = 0

(c) Unknown A, λ = 10−1 (d) Unknown A, λ = 10−1

(e) Unknown (A,B), λ = 10−3 (f) Unknown (A,B), λ = 10−3

Figure 3-23: Select γ optimally (section 3-4-4), discard the top- and bottom 10% of the cost
data for K?(γ?) (J ) and show the best achievable cost (J ?) plus the cost for K?(0) (J0). In
3-23a-3-23b for A unknown, λ = 0, in 3-23c-3-23d for A unknown, λ = 10−1; and in 3-23e-3-23f
for (A,B) unknown, λ = 10−3. All thick lines represent the empirical mean over z.
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3-4-4-1 High-dimensional Example

If our geometric interpretation is correct, then we should expect an increase in performance
for larger n, since for a sufficiently large λ ∈ R≥0 the estimates concentrate (at the boundary)
of Ein (see Figure 3-7 or Figure 3-27 below). Here, we generalize the previous example and let
A = (T ⊗In2)+(In2⊗T ) ∈ Rn2×n2 for T = tridiag(ε, 1

2(1+ε), ε) ∈ Rn×n, ε = 0.01 and n = 5.
Hence, instead of 9 unknowns, we now have 625 unknowns. The other parameters are higher
dimensional generalizations, e.g., B = In2 . We use the optimal selection scheme from before,
this time for a given B, λ = 1, N ∈ {25, 35, 60, 95, 155}, Z = 200 and γ ∈ Γ ⊆ [0, 1]. The
results are shown in Figure 3-24. Indeed, the maximal cost improvement has risen to 13.7%,
while at the same time maxing out the robustness-radius γ once the cost becomes finite.
So indeed, when significant `2-regularization is used, our framework provides a significantly
better performing control law than K?(0).

(a) Unknown A, λ = 1 (b) Unknown A, λ = 1

Figure 3-24: Given the problem from section 3-4-4-1, select γ optimally (section 3-4-4), discard
the top- and bottom 10% of the cost data for K?(γ?) (J ) and show the best achievable cost
(J ?) plus the cost for K?(0) (J0). All thick lines represent the empirical mean over z.

3-4-5 Pendubot, Aiding Mechanical Intuition

Here we will apply some of the robust control techniques to an actual underactuated two-
link pendulum (pendubot) built by DCSC, see Figure 3-25. This mechanical system allows
for verifying our mechanical intuition as hinted at before, the proposed robust framework
improves performance when the estimated model is optimistic. Parts of this section are based
on a previous report46 by the author and teammate. First, construct a model using the
geometric Euler-Lagrange framework as explained in [BL04]. If we take x = (θ1, θ2, θ̇1, θ̇2) ∈
TQ as our state and τ as input then the model can be written in the convenient nonlinear
affine control system form ẋ = f(x) + g(x)τ .

46For the course SC42035
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Figure 3-25: Schematic overview of our setup together with a visual interpretation of the con-
figuration manifold Q. Note that only the lower link is actuated!

3-4-5-1 Equilibria and the Linearized Model

From a physical point of view, our system has four equilibrium points. We focus on the
upright position, in the coordinates from Figure 3-25 this is x?up,up = (π/2, π/2, 0, 0). Then
the linearized47 model around x?up,up = (π/2, π/2, 0, 0), τ = 0 in state space form ẋ = Ax+Bτ
becomes

ẋ =


0 0 1 0
0 0 0 1

gνβ/α −c2
2g`1m

2
2/α −k1ν/α c2k2`1m2/α

−c2g`1m2β/α c2gm2γ/α c2k1`1m2/α −k2γ/α

x+


0
0
ν/α

−c2`1m2/α

 τ.
(3-4.24)

for x = (θ1, θ2, θ̇1, θ̇2) (sometimes x = (x1, x2, x3, x4)), inertias J1, J2, α :=
(
(m2c

2
2+J2)(m1c

2
1+

m2`
2
1 + J1) − c2

2`
2
1m

2
2
)
, β := (c1m1 + `1m2), γ := (m1c

2
1 + m2`

2
1 + J1) and ν := (m2c

2
2 + J2).

We will work however with a voltage u ∈ U , not with the torque τ ∈ T . The map from u to
τ is approximated by a linear system:

ẋ(t) = Aτx(t) +Bτu(t), x =
(
x5
x6

)
, Aτ =

(
A11 A12
A21 A22

)
∈ R2×2, Bτ =

(
B1
B2

)
∈ R1×2

τ(t) = Cτx(t), Cτ =
(
C1 C2

)
∈ R2×1.

Including this model in (3-4.24) yields for xe = (x1, x2, x3, x4, x5, x6)

ẋe(t) = Aexe(t) +Beu(t) =
(
A BCτ
0 Aτ

)
xe(t) +

(
0
Bτ

)
u(t). (3-4.25)

Furthermore, as we want to control the upright position we can add an integrator to the first
link.

47See [Lew02, BL04] and references therein for formal arguments why can consider a local linear model.
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3-4-5-2 Experimental results

Let the first two states be outputs and use a zero order hold (ZOH) to discretize the system.
Furthermore, let (α,Q,R,Σv,Σ0) be given, exact values are not important for now. The
reader should only understand that the emphasis is on controlling θ2 (the underactuated
upper-link) via θ1. Now, to show when our robust framework might be useful lets give the
designer an optimistic model in the following sense. For an inverted pendulum, the further the
center of gravity is from the point of rotation, the easier the stabilization, especially for a large
mass. So we over-estimate the mass and center of gravity from the first link, which all act
through the matrix Ae48. Then the real system is in some sense, a worst-case model, since the
actual link is harder to control. So we expect that after applying the robust control paradigm
with a sufficiently large γ, we anticipate on this mismatch, and handle the uncertainty. This
is exactly what is shown in Figure 3-26, for D = I7

49. For γ = 0 we cannot handle the model
mismatch, but once we have increased γ → 1, we stabilize the inverted pendula50. It is also
interesting that this approach worked via Kalman-filter based state estimation.

Figure 3-26: For γ = 0 the controller (always) fails to stabilize the upright position. Then it
was found that be increasing γ, taking more “uncertainty” into account, we eventually stabilize
the pendulum at γ = 1.

To clarify Figure 3-26 we can look at the first index of K?(γ):

K?(γ)|γ=0 = [0.4 . . . ], K?(γ)|γ=10−2 = [0.5 . . . ], K?(γ)|γ=0.1 = [0.7 . . . ], K?(γ)|γ=1 = [1.4 . . . ].

Based on our understanding of inertia, this is precisely what one would expect. The optimistic
model assumes too much traagheid51 Although this experiment is contrived, we did not tune
Ae to work for our robust framework, we merely used mechanical intuition, which perfectly
illustrates when and how our framework might be of use.

48To be specific we have overestimated m2, c2, J2.
49We used D = I7, but especially mechanical problems have a clearly structured matrix A, e.g. due to

several orders of derivatives. However, this is often lost after discretization.
50For videos see: LQR: https://www.youtube.com/watch?v=sglAreUnVvM&list=UU6B3_

-BbUJRvEbZTMR9Ytqg&index=2 RLQR: https://www.youtube.com/watch?v=_CnvX0aLUvQ&
list=UU6B3_-BbUJRvEbZTMR9Ytqg

51The dutch word for inertia is much more suitable in this case.
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3-4-6 Playing a Game with Wasserstein

At last, one may wonder what can be said about uncertainties in the stochastic part of our
model (vk). As mentioned before, there is a large body of work on the relative entropy
approach (see for example [RPUS00] and references therein). We provide a slightly different
point of view, which at the same time exemplifies the general applicability of our approach,
i.e., this example shows that we can consider not only simple “diagonal” games like (3-2.16).
Namely, based on the work by Yang [Yan18], we can extend those diagonal results to the
realm of Wasserstein Distributionally Robust Control.

Consider the dynamical system Σ : {xk+1 = Axk + Buk + Dξk where ξk ∈ Ξ ⊆ Rξ is a
random variable (ξk ∼ Pξ ∈ P(Ξ)). In this case the distribution Pξ is unknown, we only have
access to N -samples {ξ̂1, . . . , ξ̂N} =: ΞN . Given such a dataset ΞN , then denote the empirical
distribution by P̂N = 1

N

∑N
i=1 δξ̂i

and let a closed W2-ball (e.g., see (3-4.33)) centered at P̂N
with radius ρ be denoted by: BW2

ρ (P̂N ) := {Q ∈ P(Ξ) : W2(P̂N ,Q) ≤ ρ}.

Now, consider for some δ ∈ R≥0 the dynamic game, where for this occasion player 2 pays via
a Wasserstein term penalizing the deviation from the empirical distribution:

inf
{µk}∞k=0

sup
{Qk∈P(Ξ)}∞

k=0

E
x0,ξ

[ ∞∑
k=0

αk
(
x>k Qxk + u>k Ruk − δ−1W2

2 (P̂N ,Qk)
)]
,

s.t. xk+1 = Axk +Buk +Dξk, uk = µk(xk),
ξk ∼ Qk, x0 ∼ P(0,Σ0).

(3-4.26)

This game should be compared with (3-2.16) where we had a simple penalizing term of the
form δ−1w>k wk. This example shows that indeed, we can consider more involved terms,
leading to more involved uncertainty sets. Let Σ̂ξ := 1

N

∑N
i=1 ξ̂iξ̂

>
i be the empirical covariance

and assume that the empirical mean m̂ξ := 1
N

∑N
i=1 ξ̂i is 0. Then we briely state Theorem

5 from [Yan18], but in an algebraically simpler form. This follows from applying the matrix
inversion lemma52 twice and indeed yields the familiar equation from deterministic dynamic
game theory (cf. [BB95] or appendix B-3):

Lemma 3-4.3 (Zero sum game with Wasserstein, Theorem 5 [Yan18]). Let us be given a sym-
metric minimal positive semi-definite solution P to the algebraic equation

P =Q+ αA>PΛ−1A, Λ =
(
In + α(BR−1B> − δDD>)P

)
.

Then, when (δ−1I − αD>PD) � 0 the optimal policy and worst-case distribution in (3-4.26)
are given by u?k = K?xk and Q?

k(xk) = 1
N

∑N
i=1 δξ?i (xk), respectively, for:

K? = −αR−1B>PΛ−1A, (3-4.27)
ξ?i (xk) = αδD>PΛ−1Axk + δ−1(δ−1Id − αD>PD)−1ξ̂i i = 1, . . . , N. (3-4.28)

It turns out that spotting the resemblance between program (3-4.26) and a standard dynamic
game makes the analysis a lot simpler. Decompose (3-4.28) via the matrices

L? :=αδD>PΛ−1A, L̂? := δ−1(δ−1Id − αD>PD)−1, (3-4.29)
52Specifically, (A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1.
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note that L̂? is symmetric. Then instead of using Q?
k(xk) from Lemma 3-4.3 we can equiva-

lently write our worst-case dynamical system Σ? as

Σ? : {xk+1 = (A+BK? +DL?)xk +DL̂?ξk, ξk ∼ P̂N . (3-4.30)

Of course this description is not unique, we can also write Σ? : {xk+1 = (A + BK? +
DL?)xk+Dξk, ξk ∼ 1

N

∑N
i=1 δL̂?ξ̂i

. Note that the difference is essentially the covariance, Σ̂ξ vs.
L̂?Σ̂ξ(L̂?)>. These system formulations help in understanding the closed-loop behaviour and
describing the robustness. As Yang also hints at, increasing the multiplier δ, i.e., decreasing
the penalty on a non-zero Wasserstein distance, allows for more uncertainty (larger BW2

ρ (PN )
balls), which is formalized below:
Lemma 3-4.4 (Monotonic Factor). Given δ1 ≥ δ2, both in (0, δ) and corresponding to a feasible
game. Then

δ−1
1 (δ−1

1 Id − αD>P (δ1)D)−1 � δ−1
2 (δ−1

2 Id − αD>P (δ2)D)−1.

Proof of Lemma 3-4.4. Since δ1 ≥ δ2 > 0 we have P (δ1) � P (δ2) such that

(Id − δ2αD
>P (δ2)D) � (Id − δ1αD

>P (δ1)D) ⇐⇒
δ−1

1 (δ−1
1 Id − αD>P (δ1)D)−1 � δ−1

2 (δ−1
2 Id − αD>P (δ2)D)−1.

This Lemma nicely shows that a larger “radius” indeed allows for a larger amplification of
the noise. Then, to see why a Wasserstein penalty can be interpreted via our framework we
need one key observation: Since m̂ξ = 0 we obtain:

hW(δ) := E
x0,ξ

[ ∞∑
k=0

αkW2
2
(
P̂N ,Q?

k(xk)
)]

= E
x0,ξ

[ ∞∑
k=0

αk
1
N

N∑
i=1
‖ξ̂i − ξ?i (xk)‖22

]

= E
x0,ξ

[ ∞∑
k=0

αk
(
x>k L

>Lxk +
〈

(I − L̂)>(I − L̂), Σ̂ξ

〉)]
= 〈L>L,Σx〉+ (1− α)−1

〈
(I − L̂)>(I − L̂), Σ̂ξ

〉
.

(3-4.31)

However, now it seems like we do not have a nice algebraic expression for Σx due to the
distribution Q?

k(xk) being state-dependent. Nevertheless, by using (3-4.30) we see that we do
have an algebraic expression. Let Ac` := A+BK +DL and M := DL̂, then we end up with
a standard Discrete Lyapunov equation:

Σx = αAc`ΣxA
>
c` + α(1− α)−1M Σ̂ξM

> + Σ0. (3-4.32)

The big advantage of this rewriting is that we have a very clear interpretation of what is going
on in (3-4.26), or differently put, a new uncertainty set we can handle and study.
Definition 3-4.5 (A Distributional extension of Definition 3-1.1). Given the tuple (Â,D,Σ0, α),
some γ ∈ R≥0 and an empirical distribution P̂N with empirical mean 0 and Σ̂ξ := 1

N

∑N
i=1 ξ̂iξ̂

>
i

then define a set of system- and covariance matrices in Rn×n × Sn+ by:

Dγ(Â, P̂N ) =

(Ac`,Σξ) :

Ac` = Â+D∆A, Σξ = ∆ξΣ̂ξ∆>ξ ,
Σx = αAc`ΣxA

>
c` + Σ0 + α(1− α)−1DΣξD

>, Σx � 0,〈
∆>A∆A,Σx

〉
+ (1− α)−1

〈
(Id −∆ξ)>(Id −∆ξ), Σ̂ξ

〉
≤ γ

 .
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Thus in contrast to definition 3-1.1, we also allow for multiplicative uncertainties in the
covariance of ξ. This covariance part has a clear Wasserstein interpretation. Consider two
distributions, P1 := N (0, Σ̂ξ) and P2 := N

(
0, L̂?Σ̂ξ(L̂?)>

)
for L̂? from (3-4.29). As derived in

[Sho85], the W2-distance between two Gaussians Qi := N (µi, Qi) is given by

W2(Q1,Q2) =
√
‖µ1 − µ2‖22 + Tr(Q1) + Tr(Q2)− 2Tr

(
Q

1/2
2 Q1Q

1/2
2

)1/2
. (3-4.33)

Since L̂? is symmetric, the right-most term under the square-root in (3-4.33) can be easily
factored such that we obtain W2

2 (P1,P2) = Tr
(
(Id − L̂?)2Σ̂ξ

)
=
〈

(Id − L̂?)>(Id − L̂?), Σ̂ξ

〉
indeed. Hence, one could interpret definition 3-4.5 as an extension to definition 3-1.1, where a
zero-mean W2

2 -term is added to penalize deviation from some nominal (empirical) covariance
matrix. Although this final example showed further potential of our approach it must be
remarked that the additional uncertainty has no influence on the control law. This observation
makes the case for LEQR (3-4.17) again.

3-5 In Conclusion

In this chapter we saw that our Game Theoretic Robust LQ regulators possess considerable
structure, which is especially interesting from a dynamical systems point of view (cf. Corol-
lary 3-3.6). However, with our statistical motivation from section 1-1 in mind, we have to
conclude differently, at least for unbiased estimators.

3-5-1 Game Theoretic Robust LQ Regulators are Almost Surely Conservative

In section 3-3 we saw that ellipsoidal uncertainty sets, e.g., resulting from Least-Squares
identification, must be inscribed in our set, promoting conservatism. Moreover, regardless
from the used identification method or tuning of the cost-matrices, Lemma 3-3.10 told us that
P{A?(γ) = A} = 0. On top of that, Lemma 3-3.3.(iv) and Figure 3-7 tell us that unbiased
estimators, like standard linear Least-Squares most likely (more than half the time) give rise
to Â such that A?(γ) is even further away from the real A. Hence, little improvement can
be expected, on average. Then, empirical evidence from section 3-4-4 strengthens precisely
this conclusion, since P{γ? = 0} > 1

2 . This conclusion holds for unbiased estimators, when
we do add for example regularization, nominal performance can be improved, as suggested by
Figure 3-23c. The question is, to what extend are biased estimators appreciated in practice?

3-5-2 Systems Identified Under `2-Regularization Benefit from Game Theoretic
Controllers

As Appendix B-5-1 explains, introducing `2-regularization into the linear Least-Squares Sys-
tem Identification procedure can have favourable numerical and statistical implications. Es-
pecially in the small data-regime is the introduction of λ ∈ R>0 preferred. However, once we
use λ > 0, then the estimates for (A,B) are biased, such that the nominal K?(0) is by no
means the most natural controller selection anymore. What should we do? By construction
we have ‖Â|λ=0 B̂|λ=0‖F ≥ ‖Â|λ>0 B̂|λ>0‖F . Thus, we would like to select some control law
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Figure 3-27: Let σ := vec(A B) be unknown. Using Least-Squares (λ = 0) obtain a set
(ellipsoid) of estimates (σ̂) around this point. From Figure 3-7 and Lemma 3-3.3.(iv) we know
that the worst-case models σ?(γ), growing from some estimate σ̂, move away from 0. Combining
this with Vol(Ein) < Vol(Eout) implies that, on average, σ?(γ) is not sufficiently close to σ
for the performance to improve upon the nominal control law. However, after introducing `2-
regularization (λ > 0), the ellipsoid shifts towards 0, plus it becomes more isotropic, hence
significantly increasing the probability that σ?(γ) is sufficiently close to σ for some appropriate
choice of γ ∈ (0, γ).

which anticipates on this statistical under-estimation of the Frobenius-norm. Using Lemma 3-
3.3.(iv), we see that our robust control law K?(γ)|γ∈(0,γ) is fit for the job, since it anticipates
on a model being bigger in Frobenius-norm. This concept is summarized in Figure 3-27 (see
Figure 5-1 for a remark on the direction of the arrows).

And indeed, in Figure 3-23c we observe that regularization helps in the small data regime,
in general, regardless of a robust controller. However, the figure also shows that K?(γ?)
outperforms the nominal controller on average in the small data-regime53, as suggested by
the theory and explained in Figure 3-27.

Hence, when the pair (A,B) is identified using `2-regularized linear Least-Squares, which is
common practice (see [HKvWV10] for a wind turbine identification example), then a game
theoretic control law K?(γ) has favourable properties over the nominal K?(0) and due to its
computational attractive formulation, provides a realistic alternative. Of course, an interest-
ing open problem is to fully formalize this. We provide new motivation to study `2-regularized
identification, which can be compared with the OFU principle, we select some Â which does
well on the data and is small in Frobenius-norm, which happens to relate to our control
framework. Of course, regularization should not be simply added to make our control law
work. Hence, appropriate classes of problems must be studied, e.g., unstable systems in the
small data regime, plus obtaining a relation between the tuple (λ,N,Σ, Q,R, α) and γ would
be interesting.

53In [MTR19] it is shown that for sufficiently small spectral errors in (A,B) (hence, not the small data-
regime), say ‖A − Â‖ ≤ ε, the nominal controller is a good choice since the error between the induced cost
under the nominal- and best controller scale as O(ε2) (while their robust law scales as O(ε)). Of course, we
saw this performance of K?(0) throughout section 3-4-4.
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Chapter 4

Policy Iteration, an Involved Proof of
Connectedness

Since [FGKM18] was a big inspiration all along, it was natural to ask if that work could be
extended to the realms of dynamic game theory. In this chapter we provide tools and theory
towards this goal and incidentally show that our uncertainty from chapter 3 is path-connected,
which was otherwise a missing result. It must be remarked that during this process we were
not the only ones trying to achieve this extension and indeed during the summer 0f 2019
several closely related papers appeared, most notably [ZYB19].

4-1 Introduction

In [FGKM18] it was shown that the LQR cost satisfies a gradient domination property with
respect to K, which lead to a variety of model-free convergent gradient algorithms. In this
chapter we will show that this property can be generalized to LQ Dynamic Games. However,
practically speaking, just like in [FGKM18], this is more a matter of feedback improvement,
since the initial conditions must be feasible (stable) already.
Besides that, we investigate when one should use a “Jacobi” or “Gauss-Seidel”-like update
rule. To be specific, when given the task to find the extremizers in

inf
x∈X

sup
y∈Y

f(x, y),

one could employ some form of a gradient ascent/descent algorithm. Arguably, the most basic
form is given by

xk+1 =xk − η∇xf(xk, yk),
yk+1 =yk + µ∇yf(xk, yk),

(4-1.1)

for some stepsizes η, µ, which is indeed referred to as the Jacobi-like update rule. Another
option is to use the updated x already:

xk+1 =xk − η∇xf(xk, yk),
yk+1 =yk + µ∇yf(xk+1, yk),

(4-1.2)
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74 Policy Iteration, an Involved Proof of Connectedness

Such an algorithm is referred to as the Gauss-Seidel-like algorithm. Both of the names are in
correspondence with standard Numerical Linear Algebra terminology (see sec 11.2 [GL13]).
Empirical evidence suggests that (4-1.2) performs better (faster convergence) in our case,
although our provided convergence rate cannot differentiate between the two types. This is
an important open problem.

4-2 Gradient-Based Analysis of LQ Games

To keep it simple, we will consider for some γ ∈ R≥0
1, A ∈ Rn×n, B ∈ Rn×m, F ∈ Fn×f ,

Q ∈ Sn+, R ∈ Sm++ and Σ0 ∈ Sn++ a feasible, deterministic − up to x0 − infinite horizon game

inf
{uk}k∈N

sup
{vk}k∈N

E
x0

[ ∞∑
k=0

x>k Qxk + u>k Ruk − γ2v>k vk

]
,

subject to xk+1 = Axk +Buk + Fvk, x0 ∼ P(0,Σ0).
(4-2.1)

To emphasize the difference with our stochastic game (3-2.16), we use the notation of (F, v)
instead of (D,w). Regardless of how we rewrite the expressions for the optimal strategies we
know from Lemma (3-2.9) that they are both linear in xk such that we can define them to be
u?k := K?xk, v?k := L?xk, for some K? and L? depending on a (generalized) Riccati equation.
Now let the optimal cost be given by

J (K?, L?) :


E
x0

[ ∞∑
k=0

x>k

(
Q+ (K?)>RK? − γ2(L?)>L?

)
xk

]
s.t. xk+1 = (A+BK? + FL?)xk, x0 ∼ P(0,Σ0).

Where we know that J (K,L) = 〈PKL,Σ0〉 for

PKL = Q+K>RK − γ2L>L+ (A+BK + FL)>PKL(A+BK + FL), (4-2.2)

such that for ΣKL := E
x0

[∑∞
k=0 xkx

>
k

]
, under (K,L), we can write:

∇KJ (K,L) =2
(
(R+B>PKLB)K +B>PKL(A+ FL)

)
ΣKL, (4-2.3)

∇LJ (K,L) =2
(
(−γ2I + F>PKLF )L+ F>PKL(A+BK)

)
ΣKL. (4-2.4)

This can be derived using the exact same tools as in [FGKM18]. As a sidenote, recall that
(4-2.2) is the Lyapunov version (implicit in K and L) of the GARE (Generalized Algebraic
Riccati Equation seen for example in H∞-control). The explicit version is given by

PKL = Q+A>PKL
(
In +

(
BR−1B> − γ−2FF>

)
PKL

)−1
A (4-2.5)

This is usually written more compactly as PKL = Q + A>PKLΛ−1
KLA such that K? =

−R−1B>PKLΛ−1
KLA, L? = γ−2F>PKLΛ−1

KLA. At last, we define some sets which come in
very useful. They are essentially sets of feasible initial conditions.

1Without loss of generality we take the non-negative real-numbers instead of the entire line.
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4-2 Gradient-Based Analysis of LQ Games 75

Definition 4-2.1 (Feasible set). Consider the game theoretic cost function J (K,L) in the
feedback gains K and L. Then define a set of feasible policies as KL := {(K,L) : 0 ≤
J (K,L) < ∞}. Moreover, define KL|K′ := {L : 0 ≤ J (K ′, L) < ∞} and similarly
KL|L′ := {K : 0 ≤ J (K,L′) <∞}.

It turns out that Definition 4-2.1 plays a key role providing sufficient conditions for the
convergence of our algorithms. Specifically, to show that the upper- and lower-bound to the
saddle-point cost remain bounded.

4-2-1 First-Order Properties of the Cost

Since we have for the LQ cost no convexity in K and no concavity in L the next best thing
is to see if we have gradient domination like in [FGKM18]. As in their work, define:

VKL(x) = x>PKLx,

QKL(x, u, v) = x>Qx+ u>Ru− γ2v>v + VKL(Ax+Bu+ Fv),
AKL(x, u, v) = QKL(x, u, v)− VKL(x),

and two matrices related to the gradients:

EkKL =(R+B>PKLB)K +B>PKL(A+ FL),
E`KL =− (γ2If − F>PKLF )L+ F>PKL(A+BK),

such that ∇KJ (K,L) = 2EkKLΣKL, ∇LJ (K,L) = 2E`KLΣKL for ΣKL := E
x0

[∑∞
k=0 xkx

>
k

]
and Σ0 = E

x0
[x0x

>
0 ]. From there it can be observed that when Σ0 � 0 then both gradients are

0 if and only if EkKL = 0 and E`KL = 0, of course, under the assumption that (K,L) ∈ KL.
Moreover, as also pointed in [BMFM19], Σ0 � 0 helps in formally relating bounded cost to
stability, i.e., detectability is not enough2. It can be derived that3 , under the assumption of
(K,L) and (K ′, L′) being members of KL,

VK′L′(x)− VKL(x) =
∞∑
k=0

AKL(x′k, u′k, v′k). (4-2.6)

Their result thus implies that for any pair of matrices (Ki, Lj), inducing a finite cost, we have
VK′L′(x) − VKiLj (x) =

∑∞
k=0AKiLj (x′k, u′k, v′k). Moreover, we can rewrite the expression for

2Think of some x′0 ∈ Ker(A), then if our oracle declares the cost to be finite this is not per se due to
closed-loop stability. Hence we cannot infer a whole lot information regarding stability.

3As was done in a note by Tyler Summers and Peyman Mohajerin Esfahani.
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AKL quite heavily:

AKL(x,K ′x, L′x) =x>Qx+ x>K
′>RK ′x− γ2x

′>L
′>L′x

+ x>(A+BK ′ + FL′)>PKL(A+BK ′ + FL′)− x>PKLx
=x>((K ′ −K)>R(K ′ −K) + 2(K ′ −K)>RK)x

+ x>(−γ2
(
(L′ − L)>(L′ − L) + 2(L′ − L)>L

)
)x

+ x>
(
(B(K ′ −K) + F (L′ − L))>PKL(B(K ′ −K) + F (L′ − L))

)
x

+ 2x>
(
(B(K ′ −K) + F (L′ − L))>PKL(A+BK + FL)

)
=x>

[
(K ′ −K)>(R+B>PKLB)(K ′ −K)

+ (L′ − L)>(−γ2I + F>PKLF )(L′ − L)
+ 2(K ′ −K)>(R+B>PKLB) + 2(K ′ −K)>B>(A+ FL)
+ 2(L′ − L)>(−γ2If + F>PKLF )L+ 2(L′ − L)>F>PKL(A+BK)

+ 2(K ′ −K)>B>PKLF (L′ − L)
]
x.

Using the expressions for EkKL and E`KL this can be simplified to

AKL(x,K ′x, L′x) =

x>
[
(K ′ −K)>(R+B>PKLB)(K ′ −K) + (L′ − L)>(−γ2If + F>PKLF )(L′ − L)

+ 2(K ′ −K)>EkKL + 2(L′ − L)>E`KL
+ 2(K ′ −K)>B>PKLF (L′ − L)

]
x,

(4-2.7)

or in matrix form

AKL(x,K ′x, L′x) = x>

K ′ −KL′ − L
In


>R+B>PKLB B>PKLF EkKL

F>PKLB −γ2If + F>PKLF E`KL
(EkKL)> (E`KL)> 0


K ′ −KL′ − L

In

x.
So far this matrix form is nice, but will not be used. Now rewrite the expression again to end
up with

AKL(x,K ′x, L′x) =

x>
[
(K ′ −K)>(R+B>PKLB)(K ′ −K) + (L′ − L)>(−γ2If + F>PKLF )(L′ − L)

+ (K ′ −K)>(2EkKL +B>PKLF (L′ − L)) + (L′ − L)>(2E`KL + F>PKLB(K ′ −K))
]
x.

(4-2.8)
Then to continue, with these expressions for AKL in mind we can show that (“a form of”)
gradient domination holds for both pairs (K,L?) and (K?, L).

Lemma 4-2.2 (A form of Gradient Domination (extension of Lemma 3 [FGKM18])). Suppose
that (K,L?) and (K?, L) induce a finite cost, i.e. K ∈ KL|L?, L ∈ KL|K?, plus, assume that
L is chosen such that θ defined by

θ :=
∥∥∥γ2If − F>PK?LF

∥∥∥
2
. (4-2.9)
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is strictly larger than 0. Then, we have for any feasible game satisfying the assumptions:

J (K,L?)− J (K?, L?) ≤ ‖ΣK?L?‖2
µ2σmin(R)‖∇KJ (K,L?)‖2F , (4-2.10)

J (K?, L?)− J (K?, L) ≤ ‖ΣK?L?‖2
µ2θ

‖∇LJ (K?, L)‖2F , (4-2.11)

where µ := σmin(Σ0).

Proof. It would be nice if we could complete the square like in [FGKM18]. To do so we have
to recall that (γ2If − F>PF ) � 0. To keep the expression short, define

UkKL′L :=EkKL + 1
2B
>PKLF (L′ − L),

U `LK′K :=E`KL + 1
2F
>PKLB(K ′ −K),

then we can write (4-2.8) into

AKL(x,K ′x, L′x) =

x>
[ (
K ′ −K + (R+B>PKLB)−1UkKL′L

)>
(R+B>PKLB) · · ·

· · ·
(
K ′ −K + (R+B>PKLB)−1UkLK′K

)
− (UkKL′L)>(R+B>PKLB)−1UkKL′L

]
x

+ x>
[ (
L′ − L+ (−γ2If + F>PKLF )−1U `LK′K

)>
(−γ2If + F>PKLF ) · · ·

· · ·
(
L′ − L+ (−γ2If + F>PKLF )−1U `LK′K

)
− (U `LK′K)>(−γ2If + F>PKLF )−1U `LK′K

]
x.

Spot that (R+B>PB) � 0 while (−γ2If +F>PF ) ≺ 0, which of course relates to the saddle.
To get similar inequalities as equation (12) of the supplementary material from [FGKM18],
we need to plug in the optimal (or any other) strategies:

AK?L(x?,K?x?, L?x?) =

(x?)>
[ (
L? − L+ (−γ2If + F>PK?LF )−1E`K?L

)>
(−γ2If + F>PK?LF ) · · ·

· · ·
(
L? − L+ (−γ2If + F>PK?LF )−1E`K?L

)
− (E`K?L)>(−γ2If + F>PK?LF )−1E`K?L

]
x?

≤ −(x?)>
[
(E`K?L)>(−γ2If + F>PK?LF )−1E`K?L

]
x?

(4-2.12)
AKL?(x?,K?x?, L?x?) =

(x?)>
[ (
K? −K + (R+B>PKL?B)−1EkKL?

)>
(R+B>PKL?B) · · ·

· · ·
(
K? −K + (R+B>PKL?B)−1EkKL?

)
− (EkKL?)>(R+B>PKL?B)−1EkKL?

]
x?.

≥ −(x?)>
[
(EkKL?)>(R+B>PKL?B)−1EkKL?

]
x?

(4-2.13)

Observe that both (4-2.13) and (4-2.12) do not depend on optimality, but on feasibility. This
last condition is precisely the result from [FGKM18], so indeed, we have

J (K,L?)− J (K?, L?) ≤ ‖ΣK?L?‖2
µ2σmin(R)‖∇KJ (K,L?)‖2F .
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The second part can be derived similarly, we just show the main steps

J (K?, L?)− J (K?, L) = E
x0

[ ∞∑
k=0

AK?L(x?k, u?k, v?k)
]

≤ E
x0

[ ∞∑
k=0

Tr
(
x?(x?)>

(
E`K?L

)>
(γ2If − F>PK?LF )−1E`K?L

)]

≤ ‖ΣK?L?‖2
µ2θ

‖∇LJ (K?, L)‖2F .
(4-2.14)

This concludes showing that if one fixes either K = K? or L = L?, then we can speak of
gradient domination for the other player.
Note, we had to use θ instead of simply γ2 due to minus sign in γ2If − F>PK?LF . Indeed,
in the next section on algorithms we have to assume that θ > 0, which we do implicitly.
Moreover, we had to add the assumption that (K?, L) and (K,L?) induce a finite cost, just like
was remarked in [ZYB19, p.15] or in the updated version of [FGKM18, p.20-22]. Otherwise
the inequalities make little sense (formally speaking, no saddle-point).

4-3 Gradient-Based Algorithms

In this section we extend the Gauss-Newton- and the Natural-Gradient algorithm from
[FGKM18] and provide sufficient conditions for convergence. There do remain many open
problems as further explained in section 4-4.
Before we state the algorithms we make a remark regarding existence and uniqueness of a
stabilizing saddle-point (K?, L?). We intend to converge to a stabilizing saddle-point, but
is there only one? From [SW94] we know that any stabilizing solution PKL to the GARE
(4-2.5) is unique. Moreover, using tools from [BB95] (and references therein) we can easily
assert existence (standard minimal realization requirements).

4-3-1 Gauss-Newton Algorithm

It turns out that the “Gauss-Newton”-update rule from [FGKM18] can be extended by using
the same tools leading up to Lemma 4-2.24. However, formally speaking, we only show the
existence of these algorithms since the stepsize parameters cannot be fixed under our current
assumptions. We summarize these findings below, providing two update rules.

Lemma 4-3.1 (Gauss-Newton, gradient based algorithm). Let (K0, L0) ∈ KL for some (poten-
tially partially unknown, yet feasible) 7-tuple (A,B, F,Q,R, γ,Σ0), assume that K? ∈ KL|L0,
L? ∈ KL|K0 and let Σ0 � 0. Then we state two types of algorithms. First, the “Gauss-
Seidel”-like update rule

Kk+1 =Kk − ηk(R+B>PKkLkB)−1EkKkLk ,

Lk+1 =Lk + µk(γ2If − F>PKk+1LkF )−1E`Kk+1Lk .
(4-3.1)

4The fact that one can apply policy iteration to find the optimal strategies is however not new, cf.
[ATLAK07].
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Secondly, the “Jacobi”-like update rule

Kk+1 =Kk − ηk(R+B>PKkLkB)−1EkKkLk ,

Lk+1 =Lk + µk(γ2If − F>PKkLkF )−1E`KkLk .
(4-3.2)

Both of these algorithms converge to (K?, L?) at a linear rate and along a feasible path
(J (Kk, Lk) < ∞) for some sufficiently small choice of ηk, µk ∈ (0, 1] ∀k. To be explicit,
there is a β ∈ (0, 1)5 defined by β := mink{ηk‖ΣKkL?‖

−1
2 , µk‖ΣK?Lk‖

−1
2 } · σmin(Σ0). Further-

more, assume that γ is chosen such that (γ2If −F>PKk+1LkF ) � 0 ∀k in the case of (4-3.1),
or (γ2If − F>PKkLkF ) � 0 ∀k in the case of (4-3.2). Then, if we run the algorithm for N
or more steps, where N ∈ N satisfies

N ≥ 1
β

loge
(J (K0, L

?)− J (K?, L0)
ε

)
(4-3.3)

for some ε ≥ 0, we are ε-close to the optimizers, i.e., J (KN , L
?)− J (K?, LN ) ≤ ε.

We do the proof in several parts, first showing that the basic update rules contract. Then we
show that the overall algorithms contract and eventually we bound the corresponding rate.

Proof. First consider for some η ∈ (0, 1] the basic update-rule for K:

K ′ = f(K) = K − η(R+B>PKLB)−1EkKL. (4-3.4)

One can think of (4-3.4) as the standard updateKk+1 = f |L(Kk), we do not use the subscripts
right now to avoid clutter in notation. Using this rule and the expression (4-2.13), we obtain
the following series of inequalities:

J (K ′, L)− J (K,L) = E
x0

∞∑
k=0

AKL(xk,K ′xk, Lxk)

= −2ηTr(ΣK′L(EkKL)>(R+B>PKLB)−1EkKL)
+ η2Tr(ΣK′L(EkKL)>(R+B>PKLB)−1EkKL)
≤ −ηTr(ΣK′L(EkKL)>(R+B>PKLB)−1EkKL)
≤ −ησmin(Σ0)Tr((EkKL)>(R+B>PKLB)−1EkKL)

≤ −ησmin(Σ0)
‖ΣK?L‖2

(
J (K,L)− J (K?, L)

)
.

The last inequality follows from the observation that (4-2.13) does not depend on optimality,
such that we can generalize the gradient domination result. However, we implicitly assumed
that (K ′, L) ∈ KL in the first step, of course, when (K,L) ∈ KL then for sufficiently small
η ∈ (0, 1] this holds (by continuity6). Note, that stepsize need not be constant. Indeed, this
comment relates to the one in [FGKM18, p.22]. To proceed, these inequalities imply that

J (K ′, L)− J (K?, L) ≤
(

1− ησmin(Σ0)
‖ΣK?L‖2

) (
J (K,L)− J (K?, L)

)
, (4-3.5)

5β can only be 1 when there are effectively no dynamics.
6To be more specific, since KL|K0 is open (in the standard topology), together with the initial condition

that both L0 and L? are elements of KL|K0 , implies that there is a neighbourhood U around K0 such that for
all K′ ∈ U we have J (K′, L0) <∞, J (K′, L?) <∞.
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which contracts at least for η ≤ 1 − hence any selected η ∈ (0, 1] − since ΣKL � Σ0 � 0
for any (K,L) ∈ KL. We cannot employ the Banach fixed point theorem yet since we lack a
global bound (L does not remain fixed). We have to show that there is some βK ∈ (0, 1] such
that βK ≤ ησmin(Σ0)‖ΣK?L‖−1

2 for any L generated by either (4-3.1) or (4-3.2).

Suppose for the moment that such a βK exists, then we can rewrite (4-3.5) into

J (K ′, L)− J (K?, L) ≤ (1− βK)
(
J (K,L)− J (K?, L)

)
, (4-3.6)

Now, since (1− βK) ∈ [0, 1), (4-3.6) shows that employing (4-3.4) iteratively − starting from
indicated feasible conditions − results in a K∞ := limN→∞ f

N (K) such that J (K∞, L) =
J (K?, L) for some L. If this L ∈ KL|K? then we even know that J (K∞, L) <∞.

Similarly, consider for some µ ∈ (0, 1] the update-rule

L′ = g(L) =L+ µ(γ2If − F>PKLF )−1E`KL

L− µ(−γ2If + F>PKLF )−1E`KL.
(4-3.7)

Then we obtain

J (K,L′)− J (K,L) = E
x0

∞∑
k=0

AKL(xk,Kxk, L′xk)

= −2µTr(ΣKL′(E`KL)>(−γ2If + F>PKLF )−1E`KL)
+ µ2Tr(ΣKL′(E`KL)>(−γ2If + F>PKLF )−1E`KL)
≥ −µTr(ΣKL′(E`KL)>(−γ2If + F>PKLF )−1E`KL)
≥ −µσmin(Σ0)Tr((E`KL)>(−γ2If + F>PKLF )−1E`KL)
= µσmin(Σ0)Tr((E`KL)>(γ2If − F>PKLF )−1E`KL)

≥ µσmin(Σ0)
‖ΣKL?‖

(
J (K,L?)− J (K,L)

)
.

(4-3.8)

Thus, again:

J (K,L?)− J (K,L′) ≤ (1− βL)
(
J (K,L?)− J (K,L)

)
. (4-3.9)

if we assume that there is some βL ∈ (0, 1] such that βL ≤ ησmin(Σ0)‖ΣKL?‖−1
2 for any K

generated by either (4-3.1) or (4-3.2).

And again, this contracts for µ ≤ 1. Note that this contraction depends on (γ2If−F>PKLF ) �
0, therefore the assumption in the Lemma.

Both (4-3.6) and (4-3.9) are however individual contractions.

Next we show that the overall Gauss-Seidel algorithm (4-3.1) converges. Under the assump-
tion that K? ∈ KL|L0 , L? ∈ KL|K0 , iterating the algorithms (4-3.4) and (4-3.7) consec-
utively, in any order, keeps the cost bounded. To see this, let (K0, L0) ∈ KL. Then
KN := fN (K0) ∈ KL|L0 since the right-handside of (4-3.6) is bounded. Now, think of
(KN , L0) as a new initial condition such that LM := gM (L0) ∈ KL|KN since J (KN , L

?) <∞
due to (4-3.6) (plug in L?) and the initial conditions. Thus, for such an algorithm we have for
any integers N,M that J (KN , LM ) < ∞. This shows the existence of βK and βL and thus
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of some β ∈ (0, 1] := min{βK , βL}. At this point we could show that first iterating over K
(infinitely long) and then over L would yield the solution (similar to [ZYB19]). However, by
using (4-3.9) we see that J (K?, LM ) <∞ so that you can in fact alternate between updating
K and L. This does however not show that we converge to something meaningful.
Now, due to previous observations we can write:

J (K?, L?)− J (K?, LM ) ≤ (1− β)
(
J (K?, L?)− J (K?, L0)

)
,

J (KN , L
?)− J (K?, L?) ≤ (1− β)

(
J (K0, L

?)− J (K?, L?)
)
,

(4-3.10)

which is indeed well-defined under the assumption that K? ∈ KL|L0 , L? ∈ KL|K0 . Add these
terms and obtain

J (KN , L
?)− J (K?, LM ) ≤ (1− β)

(
J (K0, L

?)− J (K?, L0)
)
, N,M ∈ Z>0. (4-3.11)

This implies that for any consecutive application of (4-3.4) and (4-3.7) we indeed contract.
Since we work with a saddle-point7 J (K?, L?):

J (K?, L) ≤ J (K?, L?) ≤ J (K,L?),

we have our desired result, K ′ → K?, L′ → L? at a linear rate while maintaining a bounded
cost throughout. In other words, the upper- and lower-bound converge to each other at a
linear rate.
Now we can be brief on the proof for the Jacobi-like algorithm (4-3.2). The individual
update-rules (4-3.4) and (4-3.7) induce contractions, but we cannot conclude that they induce
an overall contraction as well. We do not even know if J (K1, L1) is bounded. To prove
boundedness recall again that for the Jacobi-algorithm we have

J (K0, L
?)− J (K0, L1) ≤

(
1− µσmin(Σ0)
‖ΣK0L?‖2

) (
J (K0, L

?)− J (K0, L0)
)
, (4-3.12)

J (K1, L0)− J (K?, L0) ≤
(

1− ησmin(Σ0)
‖ΣK?L0‖2

) (
J (K0, L0)− J (K?, L0)

)
. (4-3.13)

Since (4-3.12) must hold for any feasibleK0, we can plug inK?. Based on the initial conditions
this implies that J (K?, L1) < ∞. Similarly, J (K1, L

?) < ∞. Then plug K1 into (4-3.12),
which now implies the desired result: J (K1, L1) < ∞ since J (K1, L0) < ∞ follows from
(4-3.13). Then the results follows from a standard induction argument and applying the
same β idea to the Jacobi-case.
At last, regarding the bound on N via (4-3.3), assume we are given some scalar dynamical
system xN = (1 − β)Nx0, x0 > 0, β ∈ (0, 1) with a desired bound xN ≤ ε. Then set
(1−β)Nx0 ≤ ε and obtain a first bound onN : N ≥ log1−β(ε/x0) = −loge(x0/ε)[loge(1−β)]−1.
Using the identity8: β−1 ≥ −[loge(1−β)]−1 ∀ β ∈ (0, 1), this previous bound can be simplified
to:

N ≥ 1
β

loge
(
x0
ε

)
=⇒ xN ≤ ε. (4-3.14)

Then the result follows after using (4-3.14) in the context of (4-3.11).
7Recall, a saddle, but not over any arbitary Euclidean space for the pair (K,L), see [Mag76]
8Observed it, probably known but could not find a source. To (partially) see it, consider the equivalent

formulation 1 ≥ −β
(

loge(1− β)
)−1 =: g(β) and see that indeed limβ↑1 g(β) = 0 while limβ↓0 g(β) = 1.
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What is interesting about this proof is that we converge along a feasible path. Recall that
in standard linear optimal control theory, e.g., using Riccati equations, iterative algorithms
usually only yield formally stable controllers asymptotically. Moreover, it should be clear
that the stepsize is the critical parameter regarding convergence, which we can unfortunately
not properly fix at this point.

Corollary 4-3.2. Let J correspond to the cost of a feasible game. Then feasible set F of initial
conditions defined by

F := {(K0, L0) : (K0, L0) ∈ KL, K? ∈ KL|L0 , L
? ∈ KL|K0} (4-3.15)

is path-connected.

Proof. Follows from Lemma 4-3.1.

This means that if (KLQR, 0) ∈ F , then there is a feasible path from the worst-case game
theoretic uncertainty to the unperturbed model under its optimal control law. Moreover, we
can finally show the the finite union of connected sets from Proposition 3-2.1 are actually
one set. If this would not have been the case, then inscribed sets are possibly even more
conservative.

Corollary 4-3.3. The set Aγ is path-connected.

Proof. Consider the initial condition (K?, L0) ∈ KL, then this L0 is necessarily a perturbation
in �γ . Employing the fixed point algorithm Lk+1 = g|K?(Lk) from Lemma 4-3.1 yields a path
from L0 to L?, all within �γ . Since this holds for any feasible L0, the set �γ , and thereby Aγ ,
must be path-connected.

We can already make one remark regaring the comparison between (4-1.1) and (4-1.2). As is
generally the case (see [GL13]), providing a sharp convergence rate is more difficult for the
Gauss-Seidel algorithm. In some sense is the provided convergence rate a lower-bound in that
all the variations of these Gauss-Newton algorithms converge at least at this rate (See the
recent work [BMFM19] for sharper LQR convergence rates).

As may become clear from the proof, Lemma 4-3.1 can be greatly generalized, i.e., first update
K ki-times and then L `j-times, for what it is worth.

Also, to see why we speak of a gradient based algorithm, recall that we can write (4-3.1) as

Kk+1 =Kk −
1
2ηk(R+B>PKkLkB)−1∇KJ (Kk, Lk)Σ−1

KkLk

Lk+1 =Lk + 1
2µk(γ

2If − F>PKk+1LkF )−1∇LJ (Kk+1, Lk)Σ−1
Kk+1Lk

.
(4-3.16)

Although we need a very knowledgeable oracle for algorithms like (4-3.16) to work, we can
do a simple simulation. Here we will also compare several alternating schemes, showing the
differences between for example (4-3.2) and (4-3.1). More schemes are possible, but these are
the most realistic from a practical point of view.
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Example 4-3.4 (Gauss-Newton method, η = 1, µ = 1). Let the model be parametrized by the
controllable pair (A,B) and the adversarial input matrix F defined as

A =
(

1.2 0.5
0 0.2

)
, B =

(
0
1

)
, F =

(
1
1

)
.

Furthermore let Q = I2, R = 1 and Σ0 = I2. Throughout we set γ := 10 and fix both
stepsizes to 1. Now we simulate (4-3.16) for some initial (K0, L0), which needs to correspond
to well-defined cost J (K0, L0). The most simple choice is K0 = KLQR and L0 = 0, for
which thus only L? ∈ KL|K0 is questionable. As shown in Figure 4-1 the algorithm converges
as predicted, with indeed a bounded cost throughout. Note however that J (Kk, Lk) is by no
means sandwiched between J (Kk, L

?) and J (K?, Lk), which exemplifies perfectly the difficulty
in bounding the induced cost.

(a) The upper- and lower-bound converge to each
other.

(b) γ is sufficiently large such that the analysis
holds throughout

Figure 4-1: For γ = 10 the algorithm (4-3.1) converges.

If instead of the “Gauss-Seidel”-like algorithm (4-3.1), we do the exact same simulation, but
then under the “Jacobi”-like algorithm (4-3.2), the behaviour changes, see Figure 4-2. We
observe less contractive and more oscillatory behaviour.
Now if we let γ to be 6.5, which still corresponds to a feasible infinite-horizon game, then we
do not converge under (4-3.1) as shown in Figure 4-3a. There is an easy explanation, γ is
not sufficiently large, the factor (γ2If − F>PKk+1LkF ) fails to be positive-definite throughout
(compare Figure 4-1b and Figure 4-3b).
Again, we do the same simulation, but now for the algorithm as given by (4-3.2), see Figure
4-4. It can be observed that (γ2If − F>PKkLkF ) � 0 holds, but still the algorithm fails to
converge. The explanation is that in this case we fail to satisfy the assumption L? ∈ KL|K0.
In other words, K0 cannot stabilize L?, which is used in the proof of Lemma 4-3.1.

While performing simulations like in Example 4-3.4, it can be observed that the rule

Lk+1 =Lk + (γ2If + F>PKk+1LkF )−1E`Kk+1Lk ,

works way too well. This can be explained. Implicitly we need to assume that γ2 is suffi-
ciently large such that (γIf − F>PKk+1LkF ) � 0 ∀k ∈ Ik ⊂ N. Here, Ik denotes the set of
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(a) The upper- and lower-bound still converge to
each other.

(b) γ is sufficiently large such that the analysis
remain correct throughout

Figure 4-2: For γ = 10 the algorithm (4-3.2) still converges, but slower than (4-3.1)

(a) The upper- and lower-bound fail to converge
to each other.

(b) The scaling factor fails to remain positive
throughout.

Figure 4-3: For γ = 6.5 the algorithm (4-3.1) fails to converge.

steps to converge to desired precision. If we do not assume that this inequality holds then
the inequalities in (4-3.8) break down. Of course, flipping the sign makes the expression
more well-conditioned and as it turns out, can already make the algorithm converge, but not
provably.

Also, we can construct examples where η = 1, µ = 1 do not suffice and for example fail
to make J (K1, L

?) < ∞. In the next example we show how non-trivial the solution might
be.

Example 4-3.5 (Ill-conditioned Gauss-Newton). We use the Gauss-Seidel algorithm (4-3.1) on
the same parameters as in Example 4-3.4, but now we use a different, still feasible, initial
condition, namely

K0 =
(
−0.5059 0.3294

)
, L0 =

(
−0.0198 0.0077

)
.
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(a) The upper- and lower-bound fail to converge
to each other.

(b) The scaling factor does remain positive
throughout.

Figure 4-4: For γ = 6.5 the algorithm (4-3.2) fails to converge, which could be contributed to
J (K0, L

?) =∞.

Then we observe precisely that J (K1, L
?) =∞ under the stepsizes η = µ = 1. However if we

decrease them to (1) η = µ = 10−1 or (2) η = µ = 10−2 some typical non-convex behaviour is
displayed in Figure 4-5. Stepsize option (1) works, but we cannot simply decrease it since (2)
fails. Intuition might be that option (1) jumps over the unstable points, while (2) does not.
This further clarifies why a fixed stepsize might not be ideal.

(a) The upper- and lower-bound converge to each
other for η = µ = 10−1.

(b) The upper- and lower-bound fail to converge
to each other for η = µ = 10−2.

Figure 4-5: Convergence of the algorithm is not preserved under shrinking stepsizes.

For the sake of experiment we do some simulations while performing the most basic form of
line-search to find ηk and µk. Note, here we use a rather clever oracle since we assert at each
step that the current cost and the bounds are finite. The point is to show that µ = η = 1
usually works, but not always! Also, by allowing for a varying stepsize we can convergence
much more quickly.
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4-3-2 Natural Gradient Algorithm

The Gauss-Newton method has a few drawbacks. Most notably, we need a rather clever oracle
to update the strategies. Here we investigate a slightly simpler algorithm. As before, it turns
out that the results from [FGKM18] extend naturally.

Consider for some non-negative η and µ the update rules

K ′ = f |L(K) = K − η1
2∇KJ (K,L)Σ−1

KL = K − ηEkKL,

L′ = g|K(L) = L+ µ
1
2∇LJ (K,L)Σ−1

KL = L+ µE`KL.

Then first for K, under η ≤ ‖R+B>PKLB‖−1 we obtain:

J (K ′, L)− J (K,L) =Ex0

∞∑
k=0

AKL(xk,K ′xk, Lxk)

=− 2ηTr(ΣK′L(EkKL)>EkKL)
+ η2Tr(ΣK′L(EkKL)>(R+B>PKLB)EkKL)
≤− 2ηTr(ΣK′L(EkKL)>EkKL)

+ ‖(R+B>PKLB)‖η2Tr(ΣK′L(EkKL)>EkKL)
≤− ηTr(ΣK′L(EkKL)>EkKL)
≤− ησmin(Σ0)Tr((EkKL)>EkKL)

≤− ησmin(Σ0)σmin(R)
‖ΣK?L‖

(
J (K,L)− J (K?, L)

)
.

(4-3.17)

Again, we have to make the remark that η must be sufficiently small, yet upper-bounded by
‖R+B>PKLB‖−1. Similarly for L, under µ ≤ ‖γ2If − F>PKLF‖−1 we get

J (K,L′)− J (K,L) =Ex0

∞∑
k=0

AKL(xk,Kxk, L′xk)

=2µTr(ΣKL′(E`KL)>E`KL)
+ µ2Tr(ΣKL′(E`KL)>(−γ2If + F>PKLF )E`KL)
≥2µTr(ΣKL′(E`KL)>E`KL)
− ‖(−γ2If + F>PKLF )‖µ2Tr(ΣKL′(E`KL)>E`KL)
≥µTr(ΣKL′(E`KL)>E`KL)
≥µσmin(Σ0)Tr((E`KL)>E`KL)

≥µσmin(Σ0)θ
‖ΣKL?‖

(
J (K,L?)− J (K,L)

)
.

(4-3.18)

To remove the explicit dependency on PKL in stepsize bounds, we use the same bound as in
[FGKM18], namely J (K,L) = 〈PKL,Σ0〉 ≥ ‖PKL‖2σmin(Σ0), since P ∈ Sn+. Then we can
constrain the stepsizes using

η ≤ 1
‖R‖+ ‖B‖2J (K,L)σmin(Σ0)−1 , µ ≤ 1

θ + ‖F‖2J (K,L)σmin(Σ0)−1 .
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Instead of removing PKL, we rather removed the dependency on A, which is indeed often the
most “unknown” part of a dynamical system. Like before, by construction of the inequalities
(4-3.17),(4-3.18) we have:

J (K ′, L?)− J (K ′, L′) ≤
(

1− µσmin(Σ0)θ
‖ΣK′L?‖

) (
J (K ′, L?)− J (K ′, L)

)
,

J (K ′, L′)− J (K?, L′) ≤
(

1− ησmin(Σ0)σmin(R)
‖ΣK?L′‖

) (
J (K,L′)− J (K?, L′)

)′
.

Now we can plug in the stepsize bounds and obtain the contractions:

J (K ′, L?)− J (K ′, L′) ≤
(

1− θ

θ + ‖F‖2J (K ′, L′)σmin(Σ0)−1
σmin(Σ0)
‖ΣK′L?‖

)
· · ·

· · ·
(
J (K ′, L?)− J (K ′, L)

)
,

J (K ′, L′)− J (K?, L′) ≤
(

1− σmin(R)
‖R‖+ ‖B‖2J (K ′, L′)σmin(Σ0)−1

σmin(Σ0)
‖ΣK?L′‖

)
· · ·

· · ·
(
J (K,L′)− J (K?, L′)

)
.

Convergence is proved as before. To summarize the “Gauss-Seidel”-version of the algorithm,
we use

Kk+1 = Kk − ηk
1
2∇KJ (Kk, Lk)Σ−1

KkLk
= Kk − ηkEkKkLk

Lk+1 = Lk + µk
1
2∇LJ (Kk+1, Lk)Σ−1

Kk+1Lk
= Lk + µkE

`
Kk+1Lk .

(4-3.19)

where the sequences of stepsizes {ηk}k, {µk}k can, at least, be constrained by

ηk ≤
1

‖R‖+ ‖B‖2J (Kk, Lk)σmin(Σ0)−1 , µk ≤
1

γ2 + ‖F‖2J (Kk+1, Lk)σmin(Σ0)−1 .

(4-3.20)
Note that we changed θ into γ2, which is just a more conservative, yet simple stepsize.
To be complete, we again summarize these findings in a compact Lemma without proof (see
Lemma 4-3.1 and the construction above).

Lemma 4-3.6 (Natural gradient algorithm). Let (K0, L0) ∈ KL for some (potentially partially
unknown) 7-tuple (A,B, F,Q,R, γ,Σ0) and assume that K? ∈ KL|L0, L? ∈ KL|K0. Now,
consider the algorithm (4-3.19) under the stepsize constraints (4-3.20) and select sufficiently
small {ηk}k, {µk}k, at least satisfying the constraint. Moreover, assume that γ is chosen such
that (γ2If − F>PKk+1LkF ) � 0 ∀k. Then, there is a β ∈ (0, 1) (as derived from above) such
that if we let N ∈ N satisfy

N ≥ 1
β

loge
(J (K0, L

?)− J (K?, L0)
ε

)
for some ε ≥ 0 and run the algorithm for N or more steps, we obtain:

J (KN , L
?)− J (K?, LN ) ≤ ε.

Remark 4-3.7 (Stronger demands than dynamic game feasibility). From the definition and con-
struction of β in Lemma 4-3.6 we see that to converge, we need R � 0 and Σ0 � 0, while this
is by no means a demand for a dynamic game to be well-defined. Especially the constraint on
Σ0 cannot be relaxed.
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Example 4-3.8 (Natural gradient method). Consider the exact same model as in Example 4-3.4
with γ = 10 and let Σ0 = I2. Now we simulate the algorithm (4-3.19) under the upper-bounds
of the stepsizes. As shown in Figure 4-6 the algorithm converges again as predicted. When
compared with the Gauss-Newton method we observe slightly slower convergence (see Figure
4-1a and Figure 4-6a), which was to be expected with a gradient- and newton-step in mind.

(a) The upper- and lower-bound converge to each
other.

(b) γ is sufficiently large such that the analysis
holds throughout

Figure 4-6: For γ = 10 the algorithm converges, just like the Gauss-Newton method.

Now if we let γ to be 6.5, it seems to still work, in contrast to the Gauss-Newton method (see
Figure 4-7). The explanation can be that this natural gradient method is less ill-conditioned,
we have no “Hessian” anymore. However, since we took the same initial condition as before,
we still have L? /∈ KL|K0 and therefore we cannot conclude on convergence to the optimal
pair (K?, L?). Nevertheless, we do converge to the correct saddle-point at the cost of having
the upper-bound being undefined (∞) for the first few iterations. Note that our theory so far
has been sufficient, therefore failures of upper-bounds etc. do not prohibit convergence.

4-3-3 Simple Setting

In this last section we will consider a slightly less general setting and see that the results from
[FGKM18, BMFM19] extend without any effort.
To that end, consider for some δK , δL ∈ R≥0 the following game

inf
{uk}k∈N

sup
{vk}k∈N

Ex0

[ ∞∑
k=0

x>k Qxk + δ−1
K u>k uk − δ−1

L v>k vk

]
,

subject to xk+1 = Axk +B(uk + vk), x0 ∼ P(0,Σ0).
(4-3.21)

Note that we have set B = F . Then we know that L? = −δLδ−1
K K?, which might greatly

simplify the analysis, while still being a practically relevant problem. Later on we will again
generalize this.
Now we know that J (K) = 〈PK ,Σ0〉 for

PK = Q+
(

1− δL
δK

) 1
δK

K>K +
(
A+B

(
1− δK

δL

)
K

)>
PK

(
A+B

(
1− δL

δK

)
K

)
,
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(a) The upper- and lower-bound still converge to
each other. (b) The scaling factor remains positive throughout.

Figure 4-7: For γ = 6.5 the algorithm converges, in contrast to what we saw in Figure 4-
3. However, theoretically, we fail to satisfy the conditions from Lemma 4-3.6 and indeed the
upper-bound is not well-defined for all k.

such that for ΣK , the usual symmetric positive semi-definite solution to the Discrete Lyapunov
equation, we can write:

∇KJ (K) =2
(

1− δL
δK

)([
δ−1
K Im +B>PKB

(
1− δL

δK

)]
K +B>PKA

)
ΣK .

Under these observations, the Quasi-Newton algorithm would be of the form

Kk+1 =Kk −
1
2ηk

(
δ−1
K (1− δLδ−1

K )Im +B>PKkB(1− δLδ−1
K )2

)−1
∇KJ (Kk)Σ−1

Kk
.

We could go through all the analysis again, but there is shortcut. Under the transformations
given by B̃ =

(
1− δLδ−1

K

)
B, R̃ =

(
1− δLδ−1

K

)
R, we can just solve a standard LQR problem

and indeed apply all the theory from the aforementioned papers. Of course, we need some
basic conditions on (δK , δL) (for now R = δ−1

K ). Thus, this section is more or less a corollary
to [FGKM18, BMFM19].

For example, we can simply apply section 5.1 from [BMFM19], such that using

Kk+1 =Kk − ηk∇KJK(Kk)Σ−1
Kk
, K0 ∈ S(A, B̃) (4-3.22)

with stepsize ηk = 0.5/λmax
(
R̃+ B̃>PKkB̃

)
provably converges, at a linear rate to K?,

whereafter L? can simply be retrieved via L? = −δLδ−1
K K?. Here we mean by S(A,B) the

set of controllers stabilizing (A,B). This approach is of course reminiscent of [ZYB19], but
they do not use the simple relation between K? and L?.

Note that so far we did the transformations for δK and δL both being simply scalars, but with-
out any troubles we can apply the same idea to invertible pairs of cost- and even input matri-
ces. In such a general case, where B 6= F , we might have things like L? = −R−1

v F>B−>RK?.
To be clear, this follows from K? = −R−1B>PKLΛ−1

KLA, L? = γ−2F>PKLΛ−1
KLA. Other
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authors usually rely on the lengthy expression, from where the relation between K? and L?
is less obvious.

It can be argued that this approach has already plenty of applications. Moreover, the case
where B = F , not per se being invertible, is possibly the most natural in practice. Even more
so, although we get L? for free, in practice one might be solely interested in the controller
K?, which protects the system from L?.

We can turn these observations into a simple Lemma

Lemma 4-3.9. Consider the game

inf
K∈Rm×n

sup
L∈Rf×n

Ex0

[ ∞∑
k=0

x>
(
Q+K>RuK − L>RwL

)
xk

]
,

subject to xk+1 = (A+BK + FL)xk, x0 ∼ P(0,Σ0).
(4-3.23)

If (4-3.23) is feasible, Ru, Rw � 0 and there is a Z ∈ Rm×f such that F = BZ, then
(4-3.23) can be approached as a standard LQR problem under the transformations B ← B(I−
ZR−1

w Z>Ru), Ru ← Ru(I − ZR−1
w Z>Ru), after which L? = −R−1

w Z>RuK
?.

4-4 Preliminary Conclusions

Regarding practical applications of policy iteration in the context of LQ games, the simpler
LQR setting seems to provide a sufficient arsenal of tools. Theoretically speaking, it remains
an interesting problem with many open ends as further discussed below. It turns out that
(part of) the paper [FGKM18] can be extended to our setting (although we miss explicit
stepsize bounds, the generic gradient algorithm and the data-driven extension). The crux
might be not to overly generalize optimal control problems, but to directly exploit properties
of the actual problem at hand, in this case the quadratic cost. Substantial open problems
remain. How to extend the pure gradient algorithm? How to properly include data? How
to find sharper convergence rates ([BMFM19] proposed some ideas), especially to compare
“Jacobi” and “Gauss-Seidel”-like algorihms? At this point we bound them with the same
rate (see Lemma 4-3.1). At last, it would be interesting to make the convergence conditions
necessary and sufficient instead of just sufficient. As Example 4-3.8 shows, convergence is
possible under less stringent conditions, but at the cost of having an upper-bound attaining
∞ for a few iterations. However, we would like to make another remark. Although this
model-free approach is interesting and does provide new insights, e.g., Corollary 4-3-1, it is
amazingly data-inefficient. The hope is that this policy gradient method allows for controller
synthesis under constraints since we can turn the gradient-algorithms into projected-gradient
algorithms. However, it is not clear how the community benefits from this approach since
as frequently mentioned before, the domain is generally non-convex, which will turn most
constraints into impossible-to-verify assumptions.
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Chapter 5

After the Ending

We set out to find if dynamic game theory would give rise to a structurally nice uncertainty
set; a set which would lead to exact and tractable finite-sample control algorithms. We showed
that even the most basic dynamic game has a rich structure which can be exploited in the
study of robust linear-quadratic optimal control problems. Indeed, as remarked throughout
chapter 3, our framework is not particularly useful in the context of unbiased estimators. The
moral might be, to cope with perceived conservatism one could relax the minimax problem,
but it is wiser to first compare the geometry of your data-driven uncertainty set and the full
set considered by the robust optimizer. When your glass is however half-full, then it should
be remarked that our game theoretic control law might be an appropriate substitution of the
nominal LQ regulator in the context of `2-regularized linear Least-Squares identification.

5-1 Future Directions

Even in our simple setting there remain many open problems and interesting future research
directions, Most notably, can our set be introduced and studied in a full end-to-end frame-
work (cf. [Tu19])? In other words, can we gain further insights from adaptive schemes for
γ? For example, find a map from λ := λ′/

√
N to γ and robustly control a system identified

under `2-regularized least-squares. In correspondence with contemporary measure concentra-
tion results, we provide expressions for inscribed norm-balls in section 3-2-3, but note again
that they are usually inherently small,e.g., see Figure 3-15b, an inscribed ball around 0 is
significantly smaller than the set itself. Section 3-4-2-4 hints at concentration possibilities for
our set, but rigorous results are an open problem. In line with the remarks from sections 3-4-
3-1-3-4-4, it might however be more beneficial to first look into the identification algorithms,
obtain a better understanding of regularization in our context or look beyond Least-Squares
in the first place. Can the observations from section 3-4-4, especially regarding an uncertain
B matrix, be further formalized? It is especially interesting to note that we sample from a
line (path p(γ)) in Rm×n, not some ball around K?(0) (see Figure 5-1). Hence, the fact that
we improve, on average, cannot be statistical luck. Yet, a map ψ : (λ,N,Σ, Q,R, α) 7→ γ is
missing and would provide significant insights. This map might also shed some light on why

Master of Science Thesis Wouter Jongeneel



92 After the Ending

Figure 5-1: (a) Throughout the selection methods in section 3-4-4 we select K?(γ) from a grid
on p(γ), not some ball BFr

(
K?(0)

)
. Still, we can outperform K?(0), which is in favour of the

theoretically justified intuition skected out in Figure 3-27. (b) Copying Figure 3-27 (λ > 0) into
Figure 5-1 (b), we drew a potential σ̂?(γ), but all we know from Lemma 3-3.3 is that this vector,
for some arbitrarily small δ > 0, could have been any of the other dashed arrows pointing in
H+ := R2 \ {H ∪H−}.

it works, Figures 3-7-3-27 are justified intuition, but it is hypothesized that the structural
preservation we see throughout, e.g., Corollary 3-3.6, also comes into play. Additionally, we
need a better understanding of the direction of the worst-case path; see Figure 5-1 (b) for
an explanation. This strict-halfspace interpretation does not change the previous intuition,
but improving upon it lead to a better understanding of the framework. What is more, can
the class of systems giving rise to Aγ

(
Â+ B̂K?(γ)

)
be further formalized as a function of γ?

Examples in section 3-4-2 hinted at this possibility, e.g., is there a generic method to find
γt, such that for all γ < γt the nominal- and worst-case drift are topologically equivalent?
It would be interesting to investigate all the possible model classes. For example, using the
same ideas as in section 3.5.1 from [BB95] it can be shown that cross-terms in the cost can be
interpreted as an offset in the uncertainty set, e.g., we get

〈
(∆A −∆o)>(∆A −∆o),Σx

〉
≤ γ

for some ∆o. Moreover, in section 3-4-6 we briefly show that our framework can handle more
than a simple “diagonal” game. Nevertheless, this example also showed the limitations of the
current utility function, leading to certainty equivalence (CE), i.e., K?(γ) is optimal for any
Σv, vk

i.i.d.∼ P(0,Σv). To properly incorporate distributional uncertainties we indeed suggest a
further exploration of non-trivial utility functions, e.g., the LEQR (3-4.17) formulation. Fur-
thermore, can we formalize quantitative properties? At which value of γ does our set become
non-convex in Rd×n×Rd×m? Even more so, it is postulated that extensions to the continuous-
time, partial-information and distributional regime will bring about new insights. At last, can
our approach be of use in other fields relying on (dynamic) game theory, like Reinforcement
Learning and Generative Adversarial Networks? The author believes further investigations
are worthwhile, improving our understanding of how to efficiently link identification- and
control algorithms towards safe data-driven control. Nevertheless, the main future challenge
would be to bring the Optimization-, Control-, Dynamical Systems- and especially Statistics
communities (even further) together.
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Appendix A

Auxiliary Tools

The following Lemma, in its original form by Peyman Mohajerin Esfahani, is the key to bridge
the RLQR problem (2-1.2) under uncertainty sets from Definition 3-1.1 to a dynamic game
theory perspective.

Lemma A-0.1 (Exact constraint relaxation). Let f, g be functions from X to R ∪ {∞}. Given
a parameter γ ≥ 0, we define the optimization programs

P1(γ) :

 sup
x∈X

f(x)

s.t. g(x) ≤ γ,
P2(γ) : sup

x∈X
f(x)− γ−1g(x),

where x?i (γ), i ∈ {1, 2}, denote an optimizer of the corresponding program. Then, the following
holds:

(i) The function h(γ) := g
(
x?2(γ)

)
is non-decreasing over γ ∈ R≥0 when P2(γ) admits an

optimal solution.

(ii) A solution to the program P1(γ) can be retrieved via x?1(γ) = x?2
(
h−1(γ)

)
, where h−1

denotes the inverse function of h defined in (i).1

Proof. Consider the parameters γ1 ≥ γ2, and let x?2(γ1) and x?2(γ2) be the optimizers of the
program P2, respectively. In view of the optimality of these solutions, one can readily deduce
that

f
(
x?2(γ1)

)
− γ−1

1 g
(
x?2(γ1)

)
≥ f

(
x?2(γ2)

)
− γ−1

1 g
(
x?2(γ2)

)
f
(
x?2(γ2)

)
− γ−1

2 g
(
x?2(γ2)

)
≥ f

(
x?2(γ1)

)
− γ−1

2 g
(
x?2(γ1)

)
.

Adding the two sides of the above inequalities yields

(γ−1
2 − γ−1

1 )g
(
x?2(γ2)

)
≤ (γ−1

2 − γ−1
1 )g

(
x?2(γ1)

)
⇐⇒ g

(
x?2(γ2)

)
≤ g

(
x?2(γ1)

)
1In case the inverse function has more than one solution, any selection from the set h−1(γ) fulfills the

assertion of (ii).
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which concludes the assertion (i).

For (ii), we first argue that any optimal solution to P2(γ) is an optimal solution to P1
(
g
(
x?2(γ)

))
,

i.e., using the notation of the optimizers, we have x?2(γ) = x?1

(
g
(
x?2(γ)

))
for any γ ≥ 0. To

this end, observe that by the definition the optimizer x?2(γ) is a feasible solution to the pro-
gram P1 when the parameter γ is set to g

(
x?2(γ)

)
. It then suffices to prove the optimality.

For the sake of contradiction, assume that there exists a x̃1 ∈ X such that f(x̃1) > f
(
x?2(γ)

)
and g(x̃1) ≤ g

(
x?2(γ)

)
. Under this assumption, we then have

f(x̃1)− γ−1g(x̃1) > f
(
x?2(γ)

)
− γ−1g

(
x?2(γ)

)
,

which contradicts the optimality condition of x?2(γ) in the program P2. Thus, we conclude that
x?2(γ) = x?1

(
g
(
x?2(γ)

))
. Finally, in the light of the inverse function definition (i.e., γ̃ = h(γ) if

and only if γ ∈ h−1(γ̃)), we arrive at the desired assertion x?2
(
h−1(γ̃)

)
= x?1(γ̃). This concludes

the proof of (ii).

Next, we provide two trace inequalities.

Lemma A-0.2. Given some n × n-dimensional symmetric matrices A � 0 and B � 0, then
for X � 0

Tr(XA) ≥ Tr(XB) =⇒ κ(X)Tr(A) ≥ ‖B‖2.

Proof. First, let V ΣV > be the SVD of X, then

Tr(XA) ≥ Tr(XB) =⇒ σmax(X)Tr(V V >A) ≥ Tr(XB).

Then since X � 0 we know Tr(XB) ≥ ‖B‖2σmin(X) such that

σmax(X)
σmin(X) Tr(A) ≥ ‖B‖2.

Lemma A-0.3. Given some X,Y, Z ∈ Sn++, Let Y � Z � 0, and [X,Y ] = 0, [X,Z] = 0, for
[Q,R] := QR−RQ. Then, Tr(XY ) > Tr(XZ).

Proof. Let A := Y − Z � 0, such that by linearity of Tr(·) and [X,Y ] = 0, [X,Z] = 0 we get
Tr(X1/2AX1/2) > 0, hence the result.
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Appendix B

Further Background Information

In this appendix we provide further explanations regarding topics assumed to be (partially)
known within the main part.

B-1 Degenerate Quadratic Programs

We start with a very useful result which shows up everywhere once you work with a quadratic
cost. Consider the optimization problem for C � 0:

inf
u
f(x, u) := inf

u

(
x
u

)>(
A B
B> C

)(
x
u

)
.

Then the solution and cost are given by u? = −C−1B>x, f(x, u?) = x>(A − BC−1B>)x.
Now what happens when C � 0 instead? We can without loss of generality consider the QP
given by

inf
u

1
2u
>Hu+ x>u, H � 0.

If a solution exists, it must satisfy Hu? = −x. To see this, let H = QΛQ> (H is without loss
of generality symmetric) and consider the equivalent program

inf
z=Q>u

= 1
2z
>Λz + r>z = inf

z

n∑
i=1

1
2z

2
i λi + ziri,

for r = Q>x. This effectively decouples the problem and yields a set of scalar problems.
We know that λi ≥ 0 ∀i, but also that optimizing zi must satisfy z?i λi = −ri. When this
relation is transformed back we get the relation Hu? = −x. In other words, if ri 6= 0 while
λi = 0, the problem is unbounded, which is rather intuitive. This simple observation is used
in section 3-4-2-2.
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B-2 Introduction to Discrete Topological Dynamical Systems

Here we give a brief introduction into topological equivalence of dynamical systems1.

It is widely known that we call two topological spaces X and Y topologically equivalent if
there is some homeomorphism ϕ ∈ Cr(X,Y ), r ≥ 0. Now consider the subspaces c1 ⊆ X,
c2 ⊆ Y , which can indeed be some trajectories (curves). Then we call c1 and c2 topologically
equivalent if ψ = ι−1

2 ◦ ϕ ◦ ι1 is a homeomorphism, i.e., the diagram

c1 c2

X Y

ψ

ι1 ι2

ϕ

commutes. Here, ι is an inclusion map, e.g. ι1 : c1 ↪−→ X. For an illustrative example,
see Figure B-1, or see [BB00] for a beautiful example in control theory. To extend these

Figure B-1: Although c1 and c2 might appear to be “equivalent”, they are not, topologically
speaking. This because the spaces these curves are embedded in are not topologically equivalent.

ideas to dynamical systems, introduce the semigroup2 Gi with the actions g ∈ Gi defined by
g · x = Aki x, k ∈ Z≥0. Then, define two orbits, O1(x) and O2(x) by Oi(x) := {g · x : g ∈
Gi}. These orbits allow for (some) partitions X =

⊔
xO1(x), Y =

⊔
y O2(y), note that the

(disjoint) unions are not per se over all x and y (consider a limit cycle). Now we call the
dynamical systems defined by G1 (A1) and G2 (A2) topologically equivalent if we can find a
homeomorphism ϕ and bijective map h such that ϕ

(
G1(x)

)
= G2

(
h(x)

)
∀x ∈ X. In other

words, each orbit O1(x) is homeomorphic to some other orbit O2(y), where the selection
is made by h. Here we impose a slight, but most natural, restriction on h, namely to be
equivalent to ϕ. This leads us to definition 3-3.1. For example, to continue with the scalar
system from section 2-2-4, there, the corresponding homeomorhisms follow from proposition
1.5 in [KR73] and are given by ϕ(x) = x|x|c−1 with c = log|a2|(|a1|) such that for example
a1x ◦ ϕ = ϕ ◦ a2x, ∀ a1, a2 ∈ (0, 1).

In some sense, the goal of topological dynamical systems is to reduce the amount of effort,
instead of a continuum of systems, study a (hopefully) finite set. For example, for scalar
linear maps we have just 7 equivalence classes [KR73]. This should be contrasted with linear
equivalence (similarity transformations), there we do have a continuum (since eigenvalues are
preserved and they compromise Cn). Take for example the scalar maps a1x and a2x which
are only linearly equivalent if they are identical.

1Effectively elaborating on the superb https://www.encyclopediaofmath.org/index.php/
Topological_equivalence.

2We do not demand A ∈ GL(n,R).
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B-3 Compact Expressions in Dynamic Game Theory

In Lemma 3-2.9 we use the compact expression for P,K? and L?, all hinging on this matrix
Λ. Similar expressions can be found in [BB95], it was however not immediately clear how to
arrive at these expressions. As it turns out, understanding these Linear Algebraic tricks is
very useful to identify familiar expressions, like we did in section 3-4-6.

Reconsider the game (3-2.16), but for the sake of corresponding references in notation similar
to [BB95], so let δ−1 , γ2. We will briefly highlight where the (compact) optimal policy
expressions come from.

For a derivation of the deterministic results with α = 1 we refer to theorem 6.4 from [BO99]
or theorem 3.1 from [BB95]. We start by truncation of the horizon to K <∞.

Assume that duality holds such that we can consider solving the robust Bellman (or Isaacs)
equation

Vk = max
wk

min
uk

{
x>k Qxk + u>k Ruk − γ2w>k wk + α E

x0,v
[Vk+1|xk]

}
.

To solve this equation assume that Vk = x>k Pkxk + qk, then we find

xkPkxk + qk = max
wk

min
uk


xkwk
uk


> 
Q 0 0

0 −γ2I 0
0 0 R



+α

A>Pk+1A A>Pk+1D A>Pk+1B
D>Pk+1A D>Pk+1D D>Pk+1B
B>Pk+1A B>Pk+1D B>Pk+1B



xkwk
uk




+ α
(
Tr(Pk+1Σv) + qk+1

)
.

(B-3.1)

Like before, Schur complements provide us with the tools to find the optimal strategies. First
for uk, when R � 03:

u?k = −α(R+ αB>Pk+1B)−1
(
B>Pk+1A B>Pk+1D

)(xk
wk

)
.

We can plug u?k back in (B-3.1) and get

x>k Pkxk + qk

= max
wk

{(
xk
wk

)> [(
Q+ αA>Pk+1A αA>Pk+1D
αD>Pk+1A −γ2I + αD>Pk+1D

)

− α2
(
A>Pk+1B
D>Pk+1B

)
(R+ αB>Pk+1B)−1

(
B>Pk+1A B>Pk+1D

) ](xk
wk

)}
+ α

(
Tr(Pk+1Σv) + qk+1

)
.

This max step is well-defined since we have −γ2I + αD>Pk+1D ≺ 0. Again, the Schur
complements deliver the optimal policy and cost-to-go, nevertheless as rather long expressions.

3Or, when relaxed (R+ αB>Pk+1B) � 0.
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Before writing it down like that, recall that for A,C,∈ GL, the matrix inversion lemma gives

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1. (B-3.2)

This allows for writing P −PB(R+B>PB)−1B>P as (P−1 +BR−1B>)−1, if P is invertible
of course. For Pk+1 this cannot be assumed. What we can do is the following, write P [I −
αB(R + αB>PB)−1B>P ]. Then the expression between the square brackets can be dealt
with using the inversion lemma. We get

X := P − αPB(R+ αB>PB)−1B>P = P (I + αBR−1B>P )−1 =: PY, (B-3.3)

where the definitions for X and Y will be useful later on. This allows for writing the rather
long expression for Pk into

Pk = Q+ αA>Pk+1

(
I + α

(
BR−1B> − 1

γ2DD
>
)
Pk+1

)−1
A, (B-3.4)

or as indeed often done: Pk = Q+ αA>Pk+1Λ−1
k A.

Then for the optimal w?k

w?k =−
(
−γ2I + αD>Pk+1(I + αBR−1B>Pk+1)−1D

)−1
· · ·

· · ·αD>Pk+1(I + αBR−1B>Pk+1)−1Axk =: L?xk.

This can however be simplified significantly, using X from (B-3.3) we can write

Pk = Q+ αA>XA− α2A>XD(−γ2I + αD>XD)−1D>XA.

We know from before that w? = −(−γ2I+αD>XD)−1αD>XAx. Now consider the following
expression for L̃:

L̃ = 1
γ2αD

>Pk+1Λ−1
k A,

= 1
γ2

(
αD>XA− α2D>XD(−γ2I + αD>XD)−1D>XA

)
= 1
γ2

(
αD>XA− α 1

γ2D
>XD(−I + α

1
γ2D

>XD)−1αD>XA

)
,

= 1
γ2

((
I −

(
−I + α

1
γ2D

>XD

)−1 1
γ2D

>XD

)
αD>XA

)
=− (−γ2I + αD>XD)−1αD>XA

=L?.

Where the first three steps are just rewriting, then we use P (1 + QP )−1 = (1 + PQ)−1P .
Finally to go from step 4 to 5 we use (−I + P )−1 = −I + (−I + P )−1P 4. Hence, we obtain
the compact expression:

w?k = αγ−2D>Pk+1Λ−1
k Axk.

4(−I + P )−1 = −(−I + P )−1(−I + P − P ) = −I + (−I + P )−1P
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This can be plugged into u?k, or use the symmetries in the problem to obtain:

u?k = −αR−1B>Pk+1Λ−1
k Axk =: K?xk.

At last, it can be checked by direct computation that

Pk = Q+ (K?)>RK? − γ2(L?)>L? + αA>clPk+1Acl (B-3.5)

for Acl := Λ−1
k A. With LQR derivations in mind, this form is very useful and concludes our

digression into where the game theoretic equations come from.

Note that we do not say anything about stability, we merely provide an explanation of why
the equations can be written in this convenient compact form.

Extending the previous results to the infinite horizon case seems as obvious as done in the
LQR case. The author of these notes is very much guilty of that thought. However, as
indicated in [BB95, BO99, BLW91], for the infinite horizon case the resulting strategies are
not per se saddle points. It turns out that we can effectively extended the practical part of
the finite horizon theory (cf. section 3.4 from [BB95]), but not the terminology. This was
first pointed out by [Mag76] whereafter [Jac77] showed that the saddle equilibrium still holds,
but over a more restricted set of strategies. We effectively show this in chapter 4 as well.

B-4 Lyapunov Equations

Throughout we frequently use the so-called discrete-time Lyapunov equation of the form (B-4.1).
We briefly mention the most simple method to solve this algebraic equation. Consider for
A ∈ Rn×n and some W � 0 the equation

Σ = AΣA> +W. (B-4.1)

Using the kronecker product identity vec(ABC) = (C>⊗A)vec(B) this can be rewritten into
(In2−A⊗A)vec(Σ) = vec(W ). This allows for solving for Σ but note that since the dimensions
of this linear system grow quadratically with n it might be computationally inefficient. Of
course, to have a valid and meaningful solution we demand A to be stable.

Regarding α-Lyapunov equations: Σ = αAΣA>+W the solution extends to vec(Σ) = (In2 −
αA ⊗ A)−1vec(W ). From here it especially clear that problems occur when the spectrum of
A approaches α−1/2, indeed, then Σ → ∞. Especially in the covariance context this has a
clear interpretation, with too little contraction, cost accumulates quickly.

B-5 On Linear Least-Squares System Identification

The vast majority of linear system identification methods use some form of Least-Squares.
In this section we discuss some of its properties and work towards clarifying the ellipsoidal
shape from Figure 3-16b. We do assume some familiarity with the topic.

Master of Science Thesis Wouter Jongeneel



100 Further Background Information

B-5-1 Regularization in Linear Least-Squares System Identification

Initially, regularization was introduced to tame ill-conditioned problems. Nowadays, there is
clear dynamical systems interpretation in the context of Mean Square Error (MSE) estimation,
to quote [LC13] “To minimize the MSE is a trade off in constraining the model: a flexible
model gives small bias (easier to describe complex behaviour) and large variance (with a flexible
model it is easier to get fooled by the noise).” In this section we shed some light on the use
of `2-regularization in the context of Linear Least-Squares System Identification.

Given some unknown system Σ : {xk+1 = Axk +Buk parametrized by A ∈ Rn×n, B ∈ Rm×n.
Then, the most common method to obtain an estimate of (A,B) is to gather data {(xk, uk)}Nk=0
and let

(ÂN , B̂N ) = argmin
(A,B)

N−1∑
k=0
‖xk+1 −Axk −Buk‖22. (B-5.1)

However, is this problem always well-defined? The answer is clearly no. Towards finding
conditions such that limN→∞(ÂN , B̂N ) = (A,B), and perhaps more importantly, towards
the existence of some M ∈ N such that (ÂN , B̂N ) is well-defined ∀N ≥ M , we can look at
what is called persistence of excitation. Following [GM86] (there are still multiple definitions
around),

Definition B-5.1 (Persistent Excitation). A sequence {zi}`i=1, with zi ∈ Rz, is persistently
exciting (PE) when

lim inf
`→∞

1
`

∑̀
i=1

ziz
>
i � 0, (B-5.2)

or locally, when there is a C > 0 such that
∑k+`
i=k+` ziz

>
i � CIz.

The main take away is that the PE condition (B-5.2) is not easily verifiable, hence conditions
on the input sequence and/or dynamical system are sought. For example, the most heavily
used trick [Moo87] is to make the input (partially) stochastic, like we did in section 3-4-4 and
clarify below (section B-5-3). For simplicity of notation, assume that we have an autonomous
system, hence only A is unknown. Then, using Linear Least-Squares, assuming that {xk}k is
(locally) PE, we obtain

Â>N =
(
N−1∑
k=0

xkx
>
k

)−1(N−1∑
k=0

xkx
>
k+1

)
. (B-5.3)

This expression immediately clarifies definition B-5.1, without a PE assumption the inverse
in (B-5.3) would not be defined.

Now, one can study PE conditions, but in practice it is much simpler to simply add reg-
ularization to (B-5.1), in our case we use `2-regularization (sometimes called ridge regres-
sion). Recall that adding `2-regularization corresponds to turning infx∈Rn ‖Ax − b‖22 into
infx∈Rn ‖Ax− b‖22 + λ‖x‖22 for some λ ∈ R>0, which is again equivalent to infx∈Rn ‖Ax− b‖22
subject to ‖x‖2 ≤ εx for some εx related to λ.

To study the effects of `2-regularization, following [VV07, ch.4], let y = Fx + v, v i.i.d.∼
N (0, σ2

vIp), where we can measure y ∈ Rp and would like to find an estimate of x ∈ Rn. The
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Linear Least-Squares solution is given by x̂ = (F>F )−1F>y whereas the regularized solution
becomes x̂λ = (F>F + λIn)−1F>y. Compare this to (B-5.3), indeed, λ > 0 introduces
numerical stability. However at some cost, under `2-regularization we introduce a bias, since
Ev[x̂λ] = (F>F + λIn)−1F>Fx 6= x = Ev[x̂]. On the other hand we reduce variance. To see
this, recall that Var(x̂) = σ2

v(F>F )−1, which can be well above 0 when the problem is ill-
conditioned (more on that later). Now, it can be found that x̂λ = Xx̂ = (F>F+λIn)−1F>Fx̂.
Hence, Var(x̂λ) = XVar(x̂)X>. In the scalar case we immediately see

Var(x̂λ) = f4

(f2 + λ)Var(x̂),

such that Var(x̂λ) < Var(x̂) ∀λ ∈ R>0. Similarly, in the vector-valued case:

Var(x̂)−Var(x̂λ) =σ2
v

(
(F>F )−1 −X(F>F )−1X>

)
,

=σ2
vX

(
2λ(F>F )−2 + λ2(F>F )−3

)
X>,

which follows from solving XVX> = (F>F )−1 for V and plugging it back in. The conclusion
still stands since the part between the brackets is strictly positive for all λ > 0.

The crux is the following, there are circumstances where an unbiased estimator has that
much variance such that some biased estimator (with smaller variance) has a smaller MSE
indeed, think of F : κ(F>F )� 1. In system identification this relates to barely satisfied PE
conditions. Hence, the introduction of λ is not just to make the problem well-defined, the
statistical performance of the corresponding estimator x̂λ might be preferred over that of x̂.

It must be remarked that “regularization is a transient phenomenon [LCM19], e.g., asymptotic
PE conditions are easily satisfied and we can take for example λ(N) = λ0/

√
N . Thus, if Âλ

outperforms Â, then this should occur in the finite-data regime, in the real world.

B-5-2 On the Asymptotic Normality of Linear Least-Squares Identification

This section is in part based on notes by Ping Yu5. As discussed before, under mild as-
sumptions it can be shown that a linear Least-Squares estimator is unbiased. We will be
however mostly concerned with the full distribution of the estimation error. Note that since
we consider a dynamical system with x0 ∼ N (0,Σ0), Σ0 ∈ Sn++, the data points from a single
trajectory are not independent, in contrast to the data resulting from some noisy linear map
y = Ax+ v.

Now, let d→ denote convergence in distribution, which is sometimes referred to as weak con-
vergence. Then, following [Cai18, p.292] we use the following definition.

Definition B-5.2 (Asymptotically Normal Estimator). An estimator θ̂N of θ? is asymptotically
normal if

√
N(θ̂N − θ?)

d→ N (0,Σ) for N →∞.

Consider the linear discrete-time system for some yet unknown A ∈ Rn×n:

xk+1 = Axk + vk, vk
i.i.d∼ N (0,Σv). (B-5.4)

5http://web.hku.hk/~pingyu/6005/6005.htm.
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To start, introduce a computationally simpler form (avoiding tensors)

xk+1 = (In ⊗ x>k )vec(A>) + vk = Ykθ + vk. (B-5.5)

To recover θ ∈ Rn2 , and thus A, let the system perform Z experiments and let all of
them run for N timesteps. Now, take only the two last data points from each experiment:
{x(z)

N , x
(z)
N−1}Zz=1. This approach greatly simplifies the analysis and is used in practice, where

in Reinforcement-learning language one might say we do just 1 experiment with Z episodes
(or rollouts), all of length N .

Then, we obtain the following expression for our Least-Squares estimator of θ ∈ Rn2 :

θ̂Z = argmin
θ∈Rn2

1
Z

Z∑
z=1
‖x(z)

N − Y
(z)
N−1θ‖

2
2

=
(

1
Z

Z∑
z=1

(
Y

(z)
N−1

)>
Y

(z)
N−1

)−1(
1
Z

Z∑
z=1

(
Y

(z)
N−1

)>
x

(z)
N

)
.

Hence, the error is given by

√
Z(θ̂Z − θ?) =

(
1
Z

Z∑
z=1

(
Y

(z)
N−1

)>
Y

(z)
N−1

)−1(
1√
Z

Z∑
z=1

(
Y

(z)
N−1

)>
v

(z)
N−1

)
.

Now, assume that E
[(
Y

(z)
N−1

)>
v

(z)
N−1

]
= 0, E

[
‖v‖42

]
<∞ and E

[
‖x‖42

]
<∞.

To use a Central Limit Theorem (CLT), we need to bound the second moment, which can be
established by bounding the expected norm of the elements:

E
[∥∥∥(Y (z)

N−1
)>
v

(z)
N−1

(
v

(z)
N−1

)>
Y

(z)
N−1

∥∥∥
F

]
≤ E

[∥∥∥(Y (z)
N−1

)>
v

(z)
N−1

(
v

(z)
N−1

)>
Y

(z)
N−1

∥∥∥2

F

]1/2

≤ n2E
[∥∥∥v(z)

N−1

∥∥∥4

2

]1/2
E
[∥∥∥x(z)

N−1

∥∥∥4

2

]1/2
<∞.

Where the inequalities follow from trace properties and Jensen’s inequality, i.e., let f be a
convex function, then E[f(x)] ≥ f(E[x]) such that from f(x) = x2 it follows that E[X2]1/2 ≥
E[X].

Therefore, by the CLT we have that(
1√
Z

Z∑
z=1

(
Y

(z)
N−1

)>
v

(z)
N−1

)
d→ N (0,Σ1), Σ1 = E

[(
Y

(z)
N−1

)>
v

(z)
N−1

(
v

(z)
N−1

)>
Y

(z)
N−1

]
.

when Z →∞. Note that this step critically hinges on the trajectory independence.

Similarly, by the Law of Large numbers

1
Z

Z∑
z=1

(
Y

(z)
N−1

)>
Y

(z)
N−1

p→ E
[(
Y

(z)
N−1

)>
Y

(z)
N−1

]
=: Σ2
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for Z →∞. Then under the assumption that Σ2 is invertible (usually a Persistent Excitation
(PE) condition is imposed) the result follows from Slutsky’s theorem.
Hence, under the aforementioned scheme

√
Z(θ̂z − θ?)

d→ N (0,Σ−1
2 Σ1Σ−1

2 ) (B-5.6)

for Z →∞.
The point is, indeed, for a sufficiently large Z, the Least-Squares estimator ÂZ is Normally
distributed around the real A. Thus, after an embedding of A into Rn2 we observe these
ellipsoidal sublevel-sets of estimates.
Like in [DMM+17], we turned to a simplified estimator with the main advantage being the
immediate independence of the data. However, as pointed out in [MT19], although this
“multiple rollout” scheme is easier to analyze, it is not data-efficient. Instead, one want to
understand single-trajectory properties. This is still an active area of research, especially
since the predominant solution method is to just add a load of noise here and there. Why
noise might help is briefly outlined below.

B-5-3 Identification using Single-Trajectories

Consider the deterministic n-dimensional system xk+1 = Axk, applying standard linear least-
squares identification using the data {xk}Nk=0 results in the estimator given by:

Â>N =
(
N−1∑
k=0

Akx0x
>
0 (Ak)>

)−1(N−1∑
k=0

Akx0x
>
0 (Ak)>

)
A>. (B-5.7)

Indeed, since x0x
>
0 is a rank 1 matrix, the estimator in (B-5.7) is not immediately well-

defined. However, we can recognize the controllability grammian within, e.g., for (A,B),
let Wi :=

∑m−1
k=0 A

kBB>(Ak)>. Indeed, Wm≥n � 0 when the pair (A,B) is controllable,
hence when (A, x0) is controllable, then the estimator is unbiased, better yet, after N ≥ n,
we recover the solution: A.
Now, what about xk+1 = Axk+Mvk, vk

i.i.d.∼ N (0,Σv) and x0 = 0? Since xk =
∑k
i=1A

k−iMvi−1
we get

Â>N =
(

1
N

N−1∑
k=0

k∑
i=1

Ak−1Mvi−1v
>
i−1M

>(Ak−i)>
)−1(

1
N

N−1∑
k=0

k∑
i=1

Ak−1Mvi−1v
>
i−1M

>(Ak−i)>
)
A>

+
(

1
N

N−1∑
k=0

k∑
i=1

Ak−1Mvi−1v
>
i−1M

>(Ak−i)>
)−1

1
N

N−1∑
k=0

k∑
i=1

Ak−1Mvi−1v
>
k .

Now, given a sufficiently large N ∈ N, is Ev0,...,vN−1

[
ÂN

]
= A? This is unfortunately a non-

trivial evaluation, but the structure, resembling (B-5.7) is clear. If we additionally assume
that vk is ergodic, i.e., limN→∞

1
N

∑N
i=1 vi = E[vk], we can provide an asymptotic result.

Note, this is a natural assumption if v is zero-mean white-noise (see [Hay96, p.89]). Assume
that (A,MΣ1/2

v ) is a controllable pair, then

lim
N→∞

E
v0,...,vN−1

[
Â>N

]
= (Wn +Wt)−1(Wn +Wt)A> + 0 = A>,
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for Wn =
∑n−1
k=0 A

kMΣvM
>(Ak)> � 0 and some Wt � 0. Hence, for sufficiently large N and

non-degenerate noise, least-squares presents us with an unbiased estimator.

For state of the art probabilistic finite-sample properties, see for example [SMT+18].
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