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First-order optimization 101

For f ∈ C1(X ⊆ Rn;R), how to find

x⋆ ∈ argminx∈X f(x) ?

Common1 approach: gradient descent

xk+1 = xk − µk∇f(xk), k = 1, 2, . . . (1)

Let f be convex with a L-Lipschitz gradient, i.e.,

∥∇f(x) − ∇f(y)∥2 ≤ L∥x − y∥2, ∀x, y ∈ X ,

then, for2 µk = 1/L and x1, x2, . . . , xK generated by (1) one obtains3

f(xK) − f(x⋆) ≤ O
(

L · ∥x1 − x⋆∥2
2

K

)
.

1Popularity measure: in the last year (May 2022 - May 2023), searching for “SGD” was on average just a factor 1/25 as popular a
searching for “Covid” (worldwide) https://trends.google.com/trends/explore?q=SGD,Covid.

2Still a very active research topic,
see https://www.quantamagazine.org/risky-giant-steps-can-solve-optimization-problems-faster-20230811/.

3Nesterov 2003, § 2.1.5.
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If a gradient exists, does it mean we always have a gradient?
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Example: DE constrained problems

Energy efficiency of transportation systems becomes increasingly important; must be
optimized4. Good news: regularity is understood/studied.

Let f(x) represent aerodynamic performance for x a set of design parameters, do we
have an expression for ∇f(x)?

◦ Idea: we can evaluate f(x′) for some design choice x′, i.e., by simulation, and
subsequently use x′

1, x′
2, . . . , f(x′

1), f(x′
2), . . . , (zeroth-order information) for

optimization.

4Images from: https://predatorcycling.com/, https://www.3ds.com/ and
https://www.youtube.com/watch?v=FGmYpo-gkpU&ab_channel=EdwinLinders.
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Zeroth-order optimization

Obtain (approximate)
x⋆ ∈ argminx∈X f(x)

via function evaluations f(x1), f(x2), . . . , f(xK) for some set of selected points
x1, x2, . . . , xK . (For simplicity, we omit noise for now.)

Two common paths5:

(i) Approximate a model : construct a local model of f , optimize using that
model, e.g., using a trust region method6.

(ii) Approximate an algorithm: e.g., approximate ∇f directly and apply some form of
gradient descent7.

5For references, consult the recent survey articles: Larson, Menickelly, and Wild 2019; Liu et al. 2020.
6See the books by Conn, Scheinberg, and Vicente 2009 and Audet and Hare 2017.
7Kiefer and Wolfowitz 1952; Nemirovsky and Yudin 1983; Flaxman, Kalai, and McMahan 2004; Spall 2005; Nesterov and Spokoiny

2017.
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A gradient-based approach

For any smooth f : R → R

∂xf(x) =
f(x + δ) − f(x)

δ
+ O(δ).

Then, run inexact (δ > 0 fixed) gradient descent

xk+1 = xk − µk
f(xk + δ) − f(xk)

δ
.

◦ When does f(xk) → f(x⋆)?

For fixed δ > 0, a bias prevails, f(xk) → f(x⋆) + O(δ)8, e.g., for f(x) = x2 we
effectively compute the gradient of f(x) + xδ, shifting x⋆ = 0 to − 1

2 δ.
Similarly, for f ∈ C1(Rn;R), one should not naïvely use

n∑
i=1

f(x + δei) − f(x)
δ

ei for (e1, e2, . . . , en) = In.

8d’Aspremont 2008; Devolder, Glineur, and Nesterov 2014.
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A gradient-based approach cont.

(i) For appropriate (adaptive) δ > 0, apply line-search9 using

n∑
i=1

f(x + δbi) − f(x)
δ

bi ≈ ∇f(x), for det(b1, b2, . . . , bn) ̸= 0.

(ii) Suppose we find a random variable ξ ∈ Rn such that

Eξ∼Ξ

[
f(x + δξ) − f(x)

δ
ξ

]
≈ ∇f(x).

Consider the randomized algorithm

xk+1 = xk − µk
f(xk + δξ) − f(xk)

δ
ξ, ξ ∼ Ξ.

(!) Active topic of research10.

9Berahas, Cao, and Scheinberg 2021.
10Randomization can be optimal Duchi et al. 2015, but no uniformly superior method exists yet “randomized finite difference schemes

can be implemented to be n times “cheaper” [than deterministic finite difference]; but an algorithm based on them has to take at least
n times more steps.” Scheinberg 2022, see also Berahas et al. 2022.
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Highly-influential exercise by Nemirovski and Yudin

Let f : Rn → R, Nemirovski and Yudin11 consider: δ-smoothing

fδ(x) = Ey∼Bn [f(x + δy)] = vol(Bn)−1
∫
Bn

f(x + δy)dy, (2a)

∇fδ(x) =
n

δ
Ey∼Sn−1 [f(x + δy)y] =

n

δ

∫
Sn−1

f(x + δy)y σ(dy). (2b)

Natural single-point candidate to approximate ∂f :

gδ(x) =
n

δ
f(x + δy)y, y ∼ Sn−1. (3a)

Observation12: avoid high-variance for δ ↓ 0 and give (3a) again the interpretation of
a directional derivative and use a multi-point oracle like:

g′
δ(x) =

n

δ
(f(x + δy) − f(x)) y, y ∼ Sn−1. (3b)

11Nemirovsky and Yudin 1983, credits usually given to Flaxman, Kalai, and McMahan 2004.
12Agarwal, Dekel, and Xiao 2010; Nesterov 2011.
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Early algorithmic analysis by Nesterov and Spokoiny

For f : Rn → R (locally convex), Gaussian smoothing13

fγ(x) =
1
κ

∫
Rn

f(x + γy)e− 1
2 ∥y∥2

2 dy (4a)

∇fγ(x) =
1
κ

∫
Rn

f(x + γy) − f(x − γy)
2γ

e− 1
2 ∥y∥2

2 ydy (4b)

with ∥∇f − ∇fγ∥ = O(nγ2).

Oracle (cd): gγ(x) =
f(x + γy) − f(x − γy)

2γ
y, y ∼ N (0, In)

with Eu∼N (0,In)
[
∥gγ(x)∥2

2
]

≤ O(n2γ2 + n∥∇f(x)∥2
2).

Algorithm: xk+1 = xk − µkgγk (xk), µk = O (1/nL) .

Performance: for γk → 0 and x̄K := 1/K
∑K

k=1 xk

E[f(x̄K)] − f(x⋆) ≤ O
(

n · L · ∥x1 − x⋆∥2
2

K

)
= O(n) · gradient descent

13Nesterov 2011; Nesterov and Spokoiny 2017.
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Numerical considerations

Analysis continued after 2011-2017, still, all common14 oracles of the form

(finite difference):
f(x + δy) − f(x)

δ
y = ∂xf(x) + O(δ)

(central difference):
f(x + δy) − f(x − δy)

2δ
y = ∂xf(x) + O(δ2),

... = ∂xf(x) + O(δp≥1)

As such, many algorithms require δk ≤ O(1/kq), with q > 0 for k = 1, 2, . . . .

◦ However, can we practically select δk → 0 for k → +∞?

For sufficiently small δ, f(x + δy) − f(x) ≤ machine precision15

=⇒ cancellation error, i.e., oracle output is nonsense.

◦ Not that frequently discussed, does it matter?

14Hazan and Levy 2014; Duchi et al. 2015; Nesterov and Spokoiny 2017; Gasnikov et al. 2017; Shamir 2017; Akhavan, Pontil, and
Tsybakov 2020; Lam, Li, and Zhang 2021; Novitskii and Gasnikov 2021.

15Generally, µM = 2−52 ≈ 10−16 .
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Intermezzo: a beautiful insight from complex analysis

As pioneered in the 60s16, let f : R → R be real analytic (Cω) and consider

f(x + iδ) = f(x) + ∂xf(x)iδ −
1
2

∂2
xf(x)δ2 −

1
6

∂3
xf(x)iδ3 + O(δ4), i2 = −1.

such that (for z ∈ C, z = ℜ(z) + ℑ(z)):

ℑ (f(x + iδ)) = ∂xf(x)δ −
1
6

∂3
xf(x)δ3 + O(δ5)

and thus

∂xf(x) =
ℑ

(
f(x + iδ)

)
δ

+ O(δ2), f(x) = ℜ(f(x + iδ)) + O(δ2).

Hence, consider using
ℑ

(
f(x + iδ)

)
δ

≈ ∂xf(x).

Cancellation errors are impossible17. Again, does it matter?

16Lyness and Moler 1967; Squire and Trapp 1998; Martins, Sturdza, and Alonso 2003; Abreu et al. 2018.
17A value of δ = 10−100 (!) is successfully used in National Physical Laboratory software Cox and Harris 2004, Page 44.
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Numerical considerations cont.: an example

For f(x) = x3, approximate ∇f(x) at x ∈ {−1, 0, 10} using

(forward difference): ffd(x, δ) =
f(x + δ) − f(x)

δ
, (5a)

(central difference): fcd(x, δ) =
f(x + δ) − f(x − δ)

2δ
, (5b)

(complex-step): fcs(x, δ) =
ℑ (f(x + iδ))

δ
(5c)

and compare the error for δ ↓ 0:

(a) x = −1 (b) x = 0 (c) x = 10

◦ Failures well before δ ≈ µM, so, it does matter.
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On the necessity of leaving R

Although single-point estimators exist18, variance blows up for δ ↓ 0. Is this
“complex-lifting” business really needed? Is there not a real analogue of

∂xf(x) =
ℑ(f(x + iδ))

δ
+ O(δ2)? (6)

Partial answer19: no.
Consider some non-empty open, convex set D ⊆ Rn then, there does not exist a
continuous map G : R → R such that for all real-analytic functions f : D → R

G (f(x + δy)) = ⟨∇f(x), y⟩δ + o(δ) ∀x ∈ D, δ > 0, y ∈ Sn−1. (7)

◦ not surprising, but provides motivation.

18Flaxman, Kalai, and McMahan 2004.
19Jongeneel 2021.

ℑ(ZO) 13/22



On the necessity of leaving R

Although single-point estimators exist18, variance blows up for δ ↓ 0. Is this
“complex-lifting” business really needed? Is there not a real analogue of

∂xf(x) =
ℑ(f(x + iδ))

δ
+ O(δ2)? (6)

Partial answer19: no.
Consider some non-empty open, convex set D ⊆ Rn then, there does not exist a
continuous map G : R → R such that for all real-analytic functions f : D → R

G (f(x + δy)) = ⟨∇f(x), y⟩δ + o(δ) ∀x ∈ D, δ > 0, y ∈ Sn−1. (7)

◦ not surprising, but provides motivation.

18Flaxman, Kalai, and McMahan 2004.
19Jongeneel 2021.

ℑ(ZO) 13/22



Comment on Algorithmic Differentiation (AD)

◦ Why bother with approximations?

Dual numbers: a + bε with a, b ∈ R and ε ̸= 0, yet, ε2 = 0, i.e., elements of the
quotient ring R[ε]/ε2, not a field =⇒ , e.g., ε2/ε and

√
ε2 not defined.

◦ C is an algebraically closed field.

AD: for f : R → R is sufficiently regular, e.g., f ∈ Cω(R), then,
f(x + ε) = f(x) + ∂xf(x)ε, i.e., f(x + ε) provides us with the pair (f(x), ∂xf(x)).

Consider ∂xf(x)|x=0 for the following Cω functions:

f(x) = x/x, f(x) = −sin(x)/x, f(x) = −e−
√

x22
.

No free lunch: most populair AD tools20 evaluate to NaN whereas the complex-step
derivative correctly approximates ∂xf(x)|x=0 = 0.
Theoretical solution: Levi-Civita field

∑
q∈Q aqεq with aq ∈ R ∀q ∈ Q (inf. dim).

20The Deep Learning Toolbox in MATLAB and AD tools in Julia (See Bezanson et al. 2017; Revels, Lubin, and Papamarkou 2016;
Innes 2018; Moses and Churavy 2020), e.g., ForwardDiff.jl, Zygote.jl and Enzyme.jl or in Python, e.g., JAX Bradbury et al. 2018
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A solution: the complex-step oracle22 (exercise)

Let f ∈ Cω(X ⊆ Rn;R), using Cauchy-Riemann/Stokes show that:

fδ(x) = Ey∼Bn [ℜ (f(x + iδy))]

∇fδ(x) = n
δ

· Ey∼Sn−1 [ℑ (f(x + iδy)) y]

with ∥∇fδ − ∇f∥2 ≤ O(nδ2).

Oracle (cs): gδ(x) = n
δ

ℑ (f(x + iδy)) y, y ∼ Sn−1.

with Eu∼Sn−1
[
∥gδ(x)∥2

2
]

≤ O(n2δ4 + n2δ2∥∇f(x)∥2 + n∥∇f(x)∥2
2).

Algorithm: xk+1 = xk − µkgδk
(xk), µk = O (1/nL)

Performance: for f convex δk = O(1/k) and x̄K := 1/K
∑K

k=1 xk

E[f(x̄K)] − f(x⋆) ≤ O
(

n · L · ∥x1 − x⋆∥2
2

K

)
= O(n) · gradient descent21.

21The paper provides similar results for strong-convex and non-convex functions. This approach recently surfaced in the optimization
community Nikolovski and Stojkovska 2018; Hare and Srivastava 2023 with the first complete deterministic non-asymptotic analysis
appearing in Jongeneel, Yue, and Kuhn 2021. The first applications of the complex-step derivative to Reinforcement Learning appeared
in Wang and Spall 2021; Wang, Zhu, and Spall 2021.

22Jongeneel, Yue, and Kuhn 2021.
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Solution:
◦ f ∈ Cω convex ̸ =⇒ fδ convex, e.g.,
for f(x) = x4 we have ℜ(f(x + iδy)) = x4 − 6x2(δy)2 + (δy)4.
Hence, look beyond typical convex proofs23.

◦ Cauchy, Riemann and Stokes24 meet:
for25 f ∈ Cω(Rn;R) with f(x + iy) = u(x, y) + iv(x, y), then
∂xi u = ∂yi v, ∂yi u = −∂xi v ∀i ∈ [n] (CR)
and for Ω orientable we have that

∫
Ω dω =

∫
∂Ω ω (Stokes), implication: the

divergence theorem
∫

Ω div(X)dvolΩ =
∫

∂Ω⟨X, N⟩dvol∂Ω. Hence:

∇fδ(x)
(def.,DCT)

= vol(Bn)−1
∫
Bn

∇xℜ (f(x + iδy)) dy

(CR)
= (vol(Bn)δ)−1

∫
Bn

∇yℑ (f(x + iδy)) dy

(Stokes)
= vol(Sn−1)/(vol(Bn)δ)

∫
Sn−1

ℑ (f(x + iδy)) y σ(dy)

(vol(Sn−1)/(vol(Bn))=n)
= (n/δ) · Ey∼σ [ℑ (f(x + iδy)) y] .

23We frequently appeal to Schmidt, Roux, and Bach 2011, Lem. 1.
24Although the general form is largely due to Cartan (Élie).
25Cω is sufficient, but not necessary.
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Example: worst function in the world

Consider the test function from Nesterov 2003, § 2.1.2

fn(x) = L
(

1
2

[
(x(1))2 +

∑n−1
i=1 (x(i+1) − x(i))2 + (x(n))2

]
− x(1)

)
(9)

for x1 = 0, L = 10−8, L1(f) = 4L and (x⋆)(i) = 1 − i/(n + 1) with x(i).

(ia) Suboptimality gap
f(x̄K ) − f⋆ for the test
function (9).

(ib) Suboptimality gap
f(xK ) − f⋆ for the test
function (9).

Figure: The single-point Complex-smoothing (CS) compared to the multi-point Gaussian
smoothing (GS) (fd) method from Nesterov and Spokoiny 2017.
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Example: strong convexity f(x) = 1
2 ∥x∥2

2

(a) f(xK ) − f⋆, n = 100. (b) f(xK ) − f⋆, n = 102. (c) f(xK ) − f⋆, n = 104.

Figure: The single-point Complex-smoothing (CS) compared to the multi-point Gaussian
smoothing (GS) (fd and cd) method from Nesterov and Spokoiny 2017, Eq. (55). The rate is for
(GS) (cd).
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Example: non-convex optimization

Consider a Rosenbrock optimization problem

minimize
x∈

√
2B2

(1 − x(1))2 + 100
(

(x(2) − (x(1))2
)2

. (10)

with x⋆ = (1, 1).

(a) Suboptimality gap
f(xK ) − f⋆ for (10).

(b) Paths taken corresponding to
Figure 4a.

Figure: The single-point Complex-smoothing (CS) method versus Gaussian-smoothing Nesterov
and Spokoiny 2017.
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What about noise?

We can handle26 “simulation noise”, e.g., ℑ(f(z)) + ξ, z ∈ Ω ∈ Cn, ξ ∼ (0, σ2).

Oracle (cs, noisy): gδ(x) =
n

δ
ℑ (f(x + iδy)) y +

n

δ
ξy, y ∼ Sn−1. (11)

◦ Handling (nξ/δ) non-trivial. In general, we need µk = O(1/k) and δk = o(µk).

◦ Non-asymptotic results27 for: constrained/unconstrained strongly convex functions
and some non-convex functions (locally).
◦ The algorithm is rate-optimal in the quadratic setting28 (not surprising).

Why the ball Bn and not some other geometry
M ∈ M = {M ⊂ [−1, 1]n : M diffeomorphic to Bn}? Optimal in the sense that

minM∈M
vol(δ∂M)
vol(δM)

=
n

δ
, Bn = argminM∈M

vol(δ∂M)
vol(δM)

, (12)

which follows from the isoperimetric inequality in Rn Osserman 1978.

26Jongeneel 2021.
27Building upon Hazan, Rakhlin, and Bartlett 2008; Akhavan, Pontil, and Tsybakov 2020.
28Shown by building upon Shamir 2013.
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Example: non-convex optimization (outlook)
Regularity of ODE/PDE constrained optimization problems can often be understood.
We apply our zeroth-order algorithm to a ODE problem29.

(a) Decay of f(xK ) with the
total number K of iterations for
10 independent simulation runs.

(b) Trajectories starting from
ℓ(0) (unknown), x0 (initial) and
xK for K = 105 (optimized).

Figure: Estimating the initial state ℓ(0) of a Lorenz system from a noisy measurement p of the
state ℓ(2) = φ2(ℓ(0)) (grey circle in 5b) at time 2. Even though the initial estimate x0 is close
to the optimized estimate xK , φ2(x0) is far from φ2(ℓ(0)).

29The complex-step derivative is implemented in an airfoil optimization package. Their underlying algorithm relies on sequential
quadratic programming Nocedal and Wright 2006, Ch. 18, as such, the guarantees one can provide are different,
see https://mdolab-cmplxfoil.readthedocs-hosted.com/en/latest/index.html, our work aims at providing rigorous guarantees
with respect to the optimization algorithm itself.
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The end
Main take away: single-point estimator where δk = O(1/k) can be safely
implemented.
Many open problems remain.
contact: wjongeneel.nl (slides will appear there).
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