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Stability under noisy measurements

Consider a discrete-time system on R”

Xept = 0% +we,  wy R distr(0, Sw = 0) (1)

with unknown 6 € R"*", being asymptotically stable (p(6) < 1). Given
measurements (X:);>o of (1), consider the LS estimator of ¢:
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Estimate §T is unstable?
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But we understand the process (@)tzo very well?

Outstanding work' on LS statistical identification of

Xepr = O0X¢ + Wi (3)
that is, bounds like ]P’(II@ —0|p <o) >1—pfort>T.
Atf lower level we first like to understand qualitative behaviour, that is,
P(0r qualitatively the same as 0)?
Observation: ¢,-norms not appropriate for stability.

A

€71

Letd = (())\ E) for A € (—=1,1), C> 1and 6 = < i) forer > 0.

Then, ||6 — B7||2 = er yet A(6r) = {A £ v/Cer} [p(-) not a norm].

'Substantial body of work on (sub-)optimal finite-sample concentration bounds for linear
systems identified via least squares estimation [Sim+18; JP19; SR19; JP20; SRD21].
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Perhaps we can truncate the Jordan normal form?

Naive method to (asymptotically) stabilize ¢’ ¢ © := {6 € R"™*" : p(9) < 1}:

scale its unstable eigenvalues into C, <. Consider the matrices
p 1.01 10 0 0.84  4.77 0 0.99 10
0 = 3 Qa = ) gb - .
0.01 1 0.005 0.84 0 0.99

Clipping off the unstable eigenvalues of 8" at |\| = 0.99 yields
0, with p(03) = 0.99 and ||0" — 65|, = 5.24.

However, 6, also has p(6;) = 0.99 but with ||¢" — 6} ||, = 0.02!
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Problem is non-trivial, lots of related work

Towards a solution: early work by Maciejowski [Mac95], used in Sys.
Id. [VD96] (distorted).

Lacy and Bernstein [LB02] approximate © by {6 € R"*" : ||0]|, < 1} (convex,
but conservative), related: [LB03; BGS08; Tur+13] (conservative/expensive),
regularization [Van+00; Van+01] (tuning), MLE approach [Ume+18] (expensive),
more..

Related to the nearest stable matrix problem
Mo(0') € arg min ||’ — 6], (4)
gecle

Solutions: successive convex approximations [ONV13], low-rank matrix
differential equations [GL17], elegant reparametrization of © [GKS19; CGS20],
Nesterov and Protasov [NP20] solve (4) for polyhedral norms and
non-negative '
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Optimal control approach

Projection problem (4) is mathematically beautiful but perhaps practically
not ideal: Given that # € © yet or ¢ ©, do we want to project to the
boundary 90 [VD96, pp. 53-60, 125-129]?

Differently: one could try to design a LQR problem whose optimal feedback
gain kK* € R™" renders 6r + K* stable.

Overlooked but early work: Tanaka and Katayama [TKO05] propose a LQR
objective that is inversely proportional to S, (clear relation to 99), yet,
without all the analysis.

Additional benefit of LQR: well-understood [BLW91; LR95], fast and
scalable (n ~ 1000), structure preserving [JK21], e.g., ker(@) = ker(é\r +K*).
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Step 1: understand (6;)>o beyond P(||6 — 6:], > 6) (1/2)

Moderate scale: (ar)r such that limr—e ar = oo yet limr, G—TT =0.

Definition (Moderate Deviation Principle (MDP) [DZ09])

A sequence (6r)r satisfies a MDP if there is a rate (“distance”) function
1(0,0) such that for any Borel set D C R"*":

1 ~
— inf 1(6.6) < liminf —I IP’( D)
o 8hep (02 0) < limnf 5, toB Po (fr €
————

r

1 ~ /
< limsup — logPy (07 € D) <— inf_1(0,0).
Tsoo AT 0’ eclD
—_————

7

Py (57_ c D) < ef?»aT+o(aT)
Finding I(-,-) can be painful..
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Step 1: understand (6;)> beyond P(||6 — 6:], > ) (2/2)

*Skipping technical assumptions, e.g., w ~ subG.

Lemma (Least squares MDP [JSK23])
If (6r)r>0 is a sequence of least squares estimators, then (G—TT(GAT —0)+0)r
satisfies a MDP with rate function

I0',0) = 1tr (551(9/ —0)Se(0 — 9)T) .
for’ So = 0560 + S = 352, 0" Sw(6")".

proof: Make the results from [YS09] explicit.

Complication: I(#’,0) non-convex in § € ©.

System: X1 = Ox + Wi, State covariance: Sg = lim;—, o Eg[x;X]], noise covariance:
Sw = E[ww]].
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Step 2: enforcing stability of &7 (1/2)

Motivated by the MDP-related optimality results®, we construct [JSK23] a
reverse |-projection defined through

P(6') € argmin(0',0) for (0',0) = 1tr (551(9’ —0)Se(¢ — 0)T) . (5)

Figure 1: Schematic visualization of Mg(6’) € arg mingeqe ||6’ — 0]|> and P (") for
different estimator realizations 6’ inside and outside of ©.

3VMK21; SVK20; BV21.
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Step 2: enforcing stability of 67 (2/2)

Observations regarding P(6") € arg mingeo (6, 6):

(i) 1(0’,0) trades of distance (weighted || - ||r) against stability (S);
(i) By exploiting that I(6r,6) = (ar/T)I(\/T/ar(6r — 6) + 6,6), one can show
that the PDF g 7 of Or satisfies
00.7(67) ~ exp(=1(6r,6) - T). (6)
Thus, P(?T) maximizes the RHS of (6) across all & € © (MLE-like).
In addition, by using ideas due to Jedra and Proutiere [JP20], one can

show that for Gaussian noise, I(6’,0) can be interpreted as the long-run

average expected log-likelihood ratio between observations generated
under Py and Py..
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On an intuitive level, we can motivate
. =1 T
P(6') € arg min (6, ) for I(6',6) = 1tr (sw (0" — 0)So (6 — 6) ) .

but can we formalize this?

Better yet, can we work with this operator?
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Main result

Theorem (Efficient identification with stability guarantees [JSK23])

For any 6 € ©, the reverse I-projection has the following properties.
(i) Asymptotic consistency. limr.. P(6r) =6 Pg-as.

(i) Finite sample guarantee. There are constants T > 0 and p € (0,1) that
depend only on 6 such that

Po (116 — P@)Il2 < w(Sw)2en?r(1-p*)77) 21— 3

forall B,e € (0,7)and T > m(Sw)é(n)log(Vﬁ)/s?

(iii) Efficient computation. For any ' ¢ © and Sy, Q = 0 thereisap > 1,
such that for all § > 0 we have that

03 = 0" +dlar(é’, 1, Q, (26Sw) ") € © with ||P(8") — 65]l» < O(6).
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Main result: comment on (i)

Not particularly surprising since P(6") = ¢’ for all ' € ©.

Formally, this follows readily from continuity, convexity and limr_ Or=10
Py-almost surely [CK98].

In fact, we can prove:

Lemma (Properties of 1(¢’, 0) [JSK23])

The rate function I(6’, 0) has the following properties.
(i) 1(0’,0) is analytic in (6’,0) € ©' x ©.

(i) If 0" € ©, then the sublevel set {6 € © : I(0',0) < r} is compact for
every r > 0.

(iii) If 0" € ©, then I(9’,0) tends to infinity as § approaches the boundary
of ©.
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Main result: comment on (ii)

SIOPT23

To quantify “where” in © the matrix 6 lives: we say that the system matrix
0 € © is (7, p)-stable [KTR19, Def. 1] for some = > 1and p € (0,1) if
[16%|]2 < Tp* forall k € N.

As @ is (1, p)-stable:
I(ar, P(@})) S/(§T7 0) = Itr (5;/1(57 - 9)59(§T — 0)T)
<1tr(Sy )67 — 01311561
1 0 ) T
<5nk(Sw)||0r — 9H2W7

Combine with a Pinsker-type inequality [JSK23]: for any ' € ©" and 0 € © we
have ||0" — 0|3 < 2x(Sw)I(¢’, ).

Interestingly, we can get a (similar) probabilistic grip on ||§T — 0| using the
MDP or contemporary identification results [SR19].
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Main result: comment on (iii) (1/2)

P(0') € argmingeo (0, 0) is non-convex, how does that work?

Consider mingee{tr(QSe) : 1(¢',0) < r} for the smallest radius r = r that
preserves feasibility.

Taking a Lagrangian (penalty) viewpoint, equivalent to
. —1 /
ngtr(OSg)-i-é 1(6',0)

— min lim T—HE@[ =10 + X0 — 0)TSy (0 — e)xh}

0eO T—oo
. . —1 T—1 T 1 Te—1
= min lim T 'Ey [ I (Q+ LTS Lx]
LeRNXN T3 05 0'+L | 2ik=0 k( 26— Pw ) JE

Here, 0 = 0’ + L, with L the feedback term.

For § | 0, we approach the original problem solution®.

“If 8" has unimodular eigenvalues, then, approximation is the best we can do.
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Main result: comment on (iii) (2/2)

Let P5 == 0 be a fixed point of Ps = Q + 0""Ps0’ — 0"Ps(Ps + (26Sw)~") " "Ps6’,
then

05 =60 +dlar(#’, In, Q, (2654) ")
= A;'0" for As = (In + 20SwPs) (topological ramifications).
Observe that 65 € © for any ¢!

By using [Pol86, Lem. 3.2], one can show that Ps and consequently also 0}
are real-analytic (C*) in 6 > 0.

050 ,
Moe) [ hantiuine
025f A(dy) ﬁ% fos
AXP(6,)) | 297 S aNSRY
= 0.00 {AEZ;& W;{:
oy @
[ Y s
a Jfale & F kuar A
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Figure 2: Comparison to CG [BGS08] and FG [GKS19] methods.
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We compute
/ . / / _ 1 —1rg! f T
P(0') € argmin(0',6) for I(¢',0) = 1tr (SW @ —0)Ss(0' — 6) )
(approximately) through
05 =60 +dlar(#’, In, Q, (26S,) ") for “small” 5,

dlgr(-) standard routine in MATLAB, Julia, Python and so forth,
but how to pick Q = 0 and does ¢ | 0 not look problematic?
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Symplectic perspective on the computation (1/5)

The algebraic Riccati equation (ARE)
Ps=Q+0"Ps (In + 2654P5) ™" ' (7)

is well-understood [BLW91; LR95]. Fixed-point (DP) schemes can be unstable,
elegant solution proposed in the 80s.

To start, define the pair of matrices Si,S; € R?"*?" by

0’ On><n In 26SW
o

Now, consider the generalized eigenvalue problem

SX=ASx, xeC"xeC. (9)
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Symplectic perspective on the computation (2/5)

Unroll $1X = S:XJ) as

9, On><m Xﬂ X12 _ /n 25SW Xﬂ XWZ ]S On><m
—Q In X21 X22 On><n QIT X21 X22 On><n /u
Eigenvalues come in reciprocal pairs, so without unimodular A we have a

stable and unstable subspace.

Lemma (Structure of ARE solutions [PLS80, Lem. 1])

Let Ps be a solution to (7) and let X°* = [x§ X}}]" € C*"*" denote a basis for
the stable eigenspace. Then, Ps = X21X(ﬂ and 05 = XﬂjSXﬁ1 € 0.

Follows by direct computation (inspired by the maximum principle).
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Symplectic perspective on the computation (3/5)

Eigenvector decomposition is not continuous [Lax07; Kat95].. so? One can
shown that fl(T™'AT) = T~'AT + E for ||E||2 < pra(T)||A2 [GLI3].

So, ideally we find T € arg minregi(n,r) 52(7), €.9., T € O(n,R). We cannot
simply assume symmetry, instead we use:

Lemma (Gen. real Schur decomposition [GL13, Thm. 7.7.2])

For any A, B € R"" there exist Q,Z € O(n,R) such that Q"AZ is upper
quasi-triangular and Q"BZ is upper triangular.

Lemma (QZ alg. [PLS80, Thm. 8a], know since the 70s [Fat69; Wil71]!)

Consider for the pair (51, S) its gen. real Schur decomposition as proposed
above, then, all ARE solutions are of the form P = Uxn U(ﬂ, for U:

Un In Zn
v= <U21> = (Onxn> - <221> ’ (i0)
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Symplectic perspective on the computation (4/5)

If 0’ € GL(n,R) (a.s.), then Six = AS;x — S5 'Six = Ax, but
S7'S € Sp(2n, R) = {M € R¥*" : MTQM = Q} (unlock structure).
Specifically, we can define the curve M : R — Sp(2n,R) by

’ =T o 1—T
5HM(5)ZS;W51:<9 +265,077Q  —255.,0 >

_9/7TQ 9/71’
Use (11) to compute “optimal” pair (8, Q(9)).

Lemma (Approximately geodesic [Jon22])
For Q(6) = 260""S,8" and &(t) = 6 — t, t € [0, o) then
t— M(4(t)) ~ exp(tX)M(do) is 6-approximately geodesic.

Exploit Lie group structure and define a left-invariant metric g via
go(X,Y) = (X, V)g = (d(Lg—1)g(X), d(Lg—1)g(Y))e; XY € TgSp(n, R).

We have %g = 0 (Killing), leads to bounds.
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Symplectic perspective on the computation (5/5)

Original QZ algorithm due to Moler and Stewart [MS73] (so Mathworks dlgr(-)
not bad).

Shorthand notation: Q* = 27'6%0'"(2S,) "¢’ (damped) and Q. = 266''S,,¢’
(approx. geodesic).

* QZ*

® dlqr*

Wdiqr, :
QZ, |~r-smuan

e RS

10° 10"

l."(S:lO—l»O.-S—ﬁ

(a) Convergence for n =10 (b) Time to compute 6} for n =10

Figure 3: Numerical experiments (250 per &), computing 6% by means of the QZ
algoritm or Julia’s dlqr(-) routine, for vec(#") ~ N(0,/,,) under different choices of Q
and Sy = (1/n?)I,. Each figure displays all available data.
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Take away:

(1) LDPs allow for probabilistic results adapted to the process;

(11) Steady-state covariances can be linked to optimal control;

(1) Geometric thinking pays off towards fast and reliable algorithms.

Further topics:
(i) (Topological identification [JSK22]): for § € © N GL(n,R) we have
P(P(Gr) £ 6) < e~ Clomn(@an),
(i) Hyperbolic nonlinear systems and Lyapunov exponents.
Thank you! Questions?

-n wjongeneel.nl (slides will appear here)
= wouter.jongeneel@epfl.ch
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