Towards Qualitative System Identification Through Optimization

SIOPT23 | MS330 Data-Driven Optimization: Algorithms and
Theoretical Guarantees

Wouter Jongenee ${ }^{[1]}$, based on joint work (IEEE TAC 2023) with Tobias Sutter ${ }^{[2]}$ and Daniel Kuhn ${ }^{[1]}$.

June 03, 2023
[1] École Polytechnique Fédérale de Lausanne (RAO), supported by the NCCR Automation, [2] University of Konstanz, Machine Learning and Optimization Group. Automation EPFL

Stability under noisy measurements

Consider a discrete-time system on \mathbb{R}^{n}

$$
\begin{equation*}
x_{t+1}=\theta x_{t}+w_{t}, \quad w_{t} \stackrel{\text { i.i.d. }}{\sim} \operatorname{distr}\left(0, S_{w} \succ 0\right) \tag{1}
\end{equation*}
$$

with unknown $\theta \in \mathbb{R}^{n \times n}$, being asymptotically stable $(\rho(\theta)<1)$. Given measurements $\left(\widehat{x}_{t}\right)_{t \geq 0}$ of (1), consider the LS estimator of θ :

$$
\begin{equation*}
\widehat{\theta}_{T}=\left(\sum_{t=1}^{T} \widehat{x}_{\mathrm{t}} \widehat{x}_{t-1}^{\top}\right)\left(\sum_{t=1}^{T} \widehat{x}_{t-1} \widehat{x}_{t-1}^{\top}\right)^{-1} \quad(T \geq n) . \tag{2}
\end{equation*}
$$

Collect single trajectory $\subset \mathbb{R}^{3}$

Estimate $\widehat{\theta}_{T}$ is unstable?

But we understand the process $\left(\widehat{\theta}_{t}\right)_{t \geq 0}$ very well?

Outstanding work ${ }^{1}$ on LS statistical identification of

$$
\begin{equation*}
x_{t+1}=\theta x_{t}+w_{t} \tag{3}
\end{equation*}
$$

that is, bounds like $\mathbb{P}\left(\left\|\widehat{\theta}_{t}-\theta\right\|_{p} \leq \delta\right) \geq 1-\beta$ for $t \geq T$.
At a lower level we first like to understand qualitative behaviour, that is, $\mathbb{P}\left(\widehat{\theta}_{\text {T }}\right.$ qualitatively the same as $\left.\theta\right)$?

Observation: ℓ_{ρ}-norms not appropriate for stability.

$$
\text { Let } \theta=\left(\begin{array}{ll}
\lambda & c \\
0 & \lambda
\end{array}\right) \text { for } \lambda \in(-1,1), C \gg 1 \text { and } \hat{\theta}_{T}=\left(\begin{array}{cc}
\lambda & c \\
\epsilon_{T} & \lambda
\end{array}\right) \text { for } \epsilon_{T}>0 \text {. }
$$

Then, $\left\|\theta-\widehat{\theta}_{T}\right\|_{2}=\epsilon_{T}$ yet $\lambda\left(\widehat{\theta}_{T}\right)=\left\{\lambda \pm \sqrt{C_{\epsilon}}\right\}[\rho(\cdot)$ not a norm].

[^0]Perhaps we can truncate the Jordan normal form?

Naïve method to (asymptotically) stabilize $\theta^{\prime} \notin \Theta:=\left\{\theta \in \mathbb{R}^{n \times n}: \rho(\theta)<1\right\}$: scale its unstable eigenvalues into $\mathbb{C}_{|z|<1}$. Consider the matrices

$$
\theta^{\prime}=\left[\begin{array}{cc}
1.01 & 10 \\
0.01 & 1
\end{array}\right], \theta_{a}^{\prime}=\left[\begin{array}{cc}
0.84 & 4.77 \\
0.005 & 0.84
\end{array}\right], \theta_{b}^{\prime}=\left[\begin{array}{cc}
0.99 & 10 \\
0 & 0.99
\end{array}\right]
$$

Clipping off the unstable eigenvalues of θ^{\prime} at $|\lambda|=0.99$ yields θ_{a}^{\prime} with $\rho\left(\theta_{a}^{\prime}\right)=0.99$ and $\left\|\theta^{\prime}-\theta_{a}^{\prime}\right\|_{2}=5.24$.

However, θ_{b}^{\prime} also has $\rho\left(\theta_{b}^{\prime}\right)=0.99$ but with $\left\|\theta^{\prime}-\theta_{b}^{\prime}\right\|_{2}=0.02$!

Problem is non-trivial, lots of related work

Towards a solution: early work by Maciejowski [Mac95], used in Sys.
Id. [VD96] (distorted).
Lacy and Bernstein [LB02] approximate Θ by $\left\{\theta \in \mathbb{R}^{n \times n}:\|\theta\|_{2}<1\right\}$ (convex, but conservative), related: [LB03; BGS08; Tur+13] (conservative/expensive), regularization [Van+00; Van+01] (tuning), MLE approach [Ume+18] (expensive), more..

Related to the nearest stable matrix problem

$$
\begin{equation*}
\Pi_{\Theta}\left(\theta^{\prime}\right) \in \arg \min _{\theta \in \mathrm{cl} \Theta}\left\|\theta^{\prime}-\theta\right\|^{2}, \tag{4}
\end{equation*}
$$

Solutions: successive convex approximations [ONV13], low-rank matrix differential equations [GL17], elegant reparametrization of $\widetilde{\Theta}$ [GKS19; CGS20], Nesterov and Protasov [NP20] solve (4) for polyhedral norms and non-negative θ^{\prime}.

Optimal control approach

Projection problem (4) is mathematically beautiful but perhaps practically not ideal: Given that $\theta \in \Theta$ yet $\widehat{\theta}_{T} \notin \Theta$, do we want to project to the boundary $\partial \Theta$ [VD96, pp. 53-60, 125-129]?

Differently: one could try to design a LQR problem whose optimal feedback gain $K^{\star} \in \mathbb{R}^{n \times n}$ renders $\widehat{\theta}_{T}+K^{\star}$ stable.
Overlooked but early work: Tanaka and Katayama [TK05] propose a LQR objective that is inversely proportional to S_{w} (clear relation to $\partial \Theta$), yet, without all the analysis.
Additional benefit of LQR: well-understood [BLW91; LR95], fast and scalable ($n \approx 1000$), structure preserving [JK21], e.g., $\operatorname{ker}\left(\widehat{\theta}_{T}\right)=\operatorname{ker}\left(\widehat{\theta}_{T}+K^{\star}\right)$.

Step 1: understand $\left(\widehat{\theta}_{t}\right)_{t \geq 0}$ beyond $\mathbb{P}\left(\left\|\theta-\widehat{\theta}_{t}\right\|_{p} \geq \delta\right)(1 / 2)$

Moderate scale: $\left(a_{T}\right)_{T}$ such that $\lim _{T \rightarrow \infty} a_{T}=\infty$ yet $\lim _{T \rightarrow \infty} \frac{a_{T}}{T}=0$.
Definition (Moderate Deviation Principle (MDP) [DZO9])
A sequence $\left(\widehat{\theta}_{T}\right)_{T}$ satisfies a MDP if there is a rate ("distance") function $I\left(\theta^{\prime}, \theta\right)$ such that for any Borel set $\mathcal{D} \subseteq \mathbb{R}^{n \times n}$:

$$
-\underbrace{\inf _{\theta^{\prime} \in \operatorname{int\mathcal {D}}} I\left(\theta^{\prime}, \theta\right)}_{\underline{!}} \leq \liminf _{T \rightarrow \infty} \frac{1}{a_{T}} \log \mathbb{P}_{\theta}\left(\widehat{\theta}_{T} \in \mathcal{D}\right)
$$

$\leq \limsup _{T \rightarrow \infty} \frac{1}{a_{T}} \log \mathbb{P}_{\theta}\left(\widehat{\theta}_{T} \in \mathcal{D}\right) \leq-\underbrace{\inf _{\theta^{\prime} \in \subset \mathcal{D}} \mid\left(\theta^{\prime}, \theta\right)}_{\bar{r}}$.

$\mathbb{P}_{\theta}\left(\widehat{\theta}_{T} \in \mathcal{D}\right) \leq e^{-\bar{r} \cdot a_{T}+O\left(a_{T}\right)}$ Finding $I(\cdot, \cdot)$ can be painful..

Step 1: understand $\left(\widehat{\theta}_{t}\right)_{t \geq 0}$ beyond $\mathbb{P}\left(\left\|\theta-\widehat{\theta}_{t}\right\|_{p} \geq \delta\right)(2 / 2)$

*Skipping technical assumptions, e.g., w ~ subG.

Lemma (Least squares MDP [JSK23])

If $\left(\widehat{\theta}_{T}\right)_{T \geq 0}$ is a sequence of least squares estimators, then $\left(\frac{T}{a_{T}}\left(\widehat{\theta}_{T}-\theta\right)+\theta\right)_{T}$ satisfies a MDP with rate function

$$
I\left(\theta^{\prime}, \theta\right)=\frac{1}{2} \operatorname{tr}\left(S_{w}^{-1}\left(\theta^{\prime}-\theta\right) S_{\theta}\left(\theta^{\prime}-\theta\right)^{\top}\right) .
$$

$f \circ r^{2} S_{\theta}=\theta S_{\theta} \theta^{\top}+S_{w}=\sum_{k=0}^{\infty} \theta^{k} S_{W}\left(\theta^{k}\right)^{\top}$.
proof: Make the results from [YS09] explicit.
Complication: I $\left(\theta^{\prime}, \theta\right)$ non-convex in $\theta \in \Theta$.

[^1]
Step 2: enforcing stability of $\widehat{\theta}_{T}(1 / 2)$

Motivated by the MDP-related optimality results ${ }^{3}$, we construct [JSK23] a reverse I-projection defined through

$$
\begin{equation*}
\mathcal{P}\left(\theta^{\prime}\right) \in \arg \min _{\theta \in \Theta} I\left(\theta^{\prime}, \theta\right) \text { for } I\left(\theta^{\prime}, \theta\right)=\frac{1}{2} \operatorname{tr}\left(S_{w}^{-1}\left(\theta^{\prime}-\theta\right) S_{\theta}\left(\theta^{\prime}-\theta\right)^{\top}\right) \tag{5}
\end{equation*}
$$

Figure 1: Schematic visualization of $\Pi_{\Theta}\left(\theta^{\prime}\right) \in \arg \min _{\theta \in c \mid \Theta}\left\|\theta^{\prime}-\theta\right\|^{2}$ and $\mathcal{P}\left(\theta^{\prime}\right)$ for different estimator realizations θ^{\prime} inside and outside of Θ.

[^2]
Step 2: enforcing stability of $\widehat{\theta}_{T}(2 / 2)$

Observations regarding $\mathcal{P}\left(\theta^{\prime}\right) \in \arg \min _{\theta \in \Theta} I\left(\theta^{\prime}, \theta\right)$:
(i) $I\left(\theta^{\prime}, \theta\right)$ trades of distance (weighted $\|\cdot\|_{F}$) against stability $\left(S_{\theta}\right)$;
(ii) By exploiting that $\left|\left(\widehat{\theta}_{T}, \theta\right)=\left(a_{T} / T\right)\right|\left(\sqrt{T / a_{T}}\left(\widehat{\theta}_{T}-\theta\right)+\theta, \theta\right)$, one can show that the PDF $\varrho_{\theta, T}$ of $\widehat{\theta}_{T}$ satisfies

$$
\begin{equation*}
\varrho_{\theta, T}\left(\widehat{\theta}_{T}\right) \approx \exp \left(-I\left(\widehat{\theta}_{T}, \theta\right) \cdot T\right) . \tag{6}
\end{equation*}
$$

Thus, $\mathcal{P}\left(\widehat{\theta}_{T}\right)$ maximizes the RHS of (6) across all $\theta \in \Theta$ (MLE-like).

In addition, by using ideas due to Jedra and Proutiere [JP20], one can show that for Gaussian noise, I($\left.\theta^{\prime}, \theta\right)$ can be interpreted as the long-run average expected log-likelihood ratio between observations generated under \mathbb{P}_{θ} and $\mathbb{P}_{\theta^{\prime}}$.

On an intuitive level, we can motivate
$\mathcal{P}\left(\theta^{\prime}\right) \in \arg \min _{\theta \in \Theta} I\left(\theta^{\prime}, \theta\right)$ for $I\left(\theta^{\prime}, \theta\right)=\frac{1}{2} \operatorname{tr}\left(S_{w}^{-1}\left(\theta^{\prime}-\theta\right) S_{\theta}\left(\theta^{\prime}-\theta\right)^{\top}\right)$.
but can we formalize this?
Better yet, can we work with this operator?

Main result

Theorem (Efficient identification with stability guarantees [JSK23])

For any $\theta \in \Theta$, the reverse I-projection has the following properties.
(i) Asymptotic consistency. $\lim _{T \rightarrow \infty} \mathcal{P}\left(\widehat{\theta_{T}}\right)=\theta \quad \mathbb{P}_{\theta}$-a.s.
(ii) Finite sample guarantee. There are constants $\tau \geq 0$ and $\rho \in(0,1)$ that depend only on θ such that

$$
\mathbb{P}_{\theta}\left(\left\|\theta-\mathcal{P}\left(\widehat{\theta}_{T}\right)\right\|_{2} \leq \kappa\left(S_{w}\right) 2 \varepsilon n^{\frac{1}{2}} \tau\left(1-\rho^{2}\right)^{-\frac{1}{2}}\right) \geq 1-\beta
$$

for all $\beta, \varepsilon \in(0,1)$ and $T \geq \kappa\left(S_{w}\right) \widetilde{O}(n) \log (1 / \beta) / \varepsilon^{2}$.
(iii) Efficient computation. For any $\theta^{\prime} \notin \Theta$ and $S_{w}, Q \succ 0$ there is a $p \geq 1$, such that for all $\delta>0$ we have that

$$
\theta_{\delta}^{\star}=\theta^{\prime}+\operatorname{dlqr}\left(\theta^{\prime}, I_{n}, Q,\left(2 \delta S_{w}\right)^{-1}\right) \in \Theta \text { with }\left\|\mathcal{P}\left(\theta^{\prime}\right)-\theta_{\delta}^{\star}\right\|_{2} \leq O\left(\delta^{p}\right) .
$$

Main result: comment on (i)

Not particularly surprising since $\mathcal{P}\left(\theta^{\prime}\right)=\theta^{\prime}$ for all $\theta^{\prime} \in \Theta$.
Formally, this follows readily from continuity, convexity and $\lim _{T \rightarrow \infty} \widehat{\theta}_{T}=\theta$ \mathbb{P}_{θ}-almost surely [CK98].

In fact, we can prove:

Lemma (Properties of $I\left(\theta^{\prime}, \theta\right)$ [JSK23])

The rate function $I\left(\theta^{\prime}, \theta\right)$ has the following properties.
(i) I $\left(\theta^{\prime}, \theta\right)$ is analytic in $\left(\theta^{\prime}, \theta\right) \in \Theta^{\prime} \times \Theta$.
(ii) If $\theta^{\prime} \in \Theta$, then the sublevel set $\left\{\theta \in \Theta: \mid\left(\theta^{\prime}, \theta\right) \leq r\right\}$ is compact for every $r \geq 0$.
(iii) If $\theta^{\prime} \in \Theta$, then I $\left(\theta^{\prime}, \theta\right)$ tends to infinity as θ approaches the boundary of Θ.

Main result: comment on (ii)

To quantify "where" in Θ the matrix θ lives: we say that the system matrix $\theta \in \Theta$ is (τ, ρ)-stable [KTR19, Def. 1] for some $\tau \geq 1$ and $\rho \in(0,1)$ if $\left\|\theta^{k}\right\|_{2} \leq \tau \rho^{k}$ for all $k \in \mathbb{N}$.

As θ is (τ, ρ)-stable:

$$
\begin{aligned}
I\left(\widehat{\theta_{T}}, \mathcal{P}\left(\widehat{\theta_{T}}\right)\right) & \leq I\left(\widehat{\theta}_{T}, \theta\right)=\frac{1}{2} \operatorname{tr}\left(S_{w}^{-1}\left(\widehat{\theta}_{T}-\theta\right) S_{\theta}\left(\widehat{\theta}_{T}-\theta\right)^{\top}\right) \\
& \leq \frac{1}{2} \operatorname{tr}\left(S_{w}^{-1}\right)\left\|\widehat{\theta}_{T}-\theta\right\|_{2}^{2}\left\|S_{\theta}\right\|_{2} \\
& \leq \frac{1}{2} n \kappa\left(S_{w}\right)\left\|\widehat{\theta}_{T}-\theta\right\|_{2}^{2} \frac{\tau^{2}}{1-\rho^{2}},
\end{aligned}
$$

Combine with a Pinsker-type inequality [JSK23]: for any $\theta^{\prime} \in \Theta^{\prime}$ and $\theta \in \Theta$ we have $\left\|\theta^{\prime}-\theta\right\|_{2}^{2} \leq 2 \kappa\left(S_{w}\right) /\left(\theta^{\prime}, \theta\right)$.
Interestingly, we can get a (similar) probabilistic grip on $\left\|\widehat{\theta}_{T}-\theta\right\|_{2}$ using the MDP or contemporary identification results [SR19].

Main result: comment on (iii) (1/2)

$\mathcal{P}\left(\theta^{\prime}\right) \in \arg \min _{\theta \in \Theta} I\left(\theta^{\prime}, \theta\right)$ is non-convex, how does that work?
Consider $\min _{\theta \in \Theta}\left\{\operatorname{tr}\left(Q S_{\theta}\right): \mid\left(\theta^{\prime}, \theta\right) \leq r\right\}$ for the smallest radius $r=\underline{r}$ that preserves feasibility.

Taking a Lagrangian (penalty) viewpoint, equivalent to

$$
\begin{aligned}
& \min _{\theta \in \Theta} \operatorname{tr}\left(Q S_{\theta}\right)+\delta^{-1} /\left(\theta^{\prime}, \theta\right) \\
& =\min _{\theta \in \Theta} \lim _{T \rightarrow \infty} T^{-1} \mathbb{E}_{\theta}\left[\sum_{k=0}^{T-1} x_{k}^{\top} Q x_{k}+\frac{1}{2 \delta} X_{k}^{\top}\left(\theta^{\prime}-\theta\right)^{\top} S_{w}^{-1}\left(\theta^{\prime}-\theta\right) x_{k}\right] \\
& =\min _{L \in \mathbb{R}^{\mathbb{R}} \times \infty T} \lim _{T \rightarrow \infty} T^{-1} \mathbb{E}_{\theta^{\prime}+L}\left[\sum_{k=0}^{T-1} x_{k}^{\top}\left(Q+\frac{1}{2 \delta} L^{\top} S_{w}^{-1} L\right) x_{k}\right],
\end{aligned}
$$

Here, $\theta=\theta^{\prime}+L$, with L the feedback term.
For $\delta \downarrow 0$, we approach the original problem solution ${ }^{4}$.

[^3]
Main result: comment on (iii) (2/2)

Let $P_{\delta} \succ 0$ be a fixed point of $P_{\delta}=Q+\theta^{\top \top} P_{\delta} \theta^{\prime}-\theta^{\prime \top} P_{\delta}\left(P_{\delta}+\left(2 \delta S_{w}\right)^{-1}\right)^{-1} P_{\delta} \theta^{\prime}$, then

$$
\begin{aligned}
\theta_{\delta}^{\star} & =\theta^{\prime}+\operatorname{dlq}\left(\theta^{\prime}, I_{n}, Q,\left(2 \delta S_{w}\right)^{-1}\right) \\
& =\Lambda_{\delta}^{-1} \theta^{\prime} \text { for } \Lambda_{\delta}=\left(I_{n}+2 \delta S_{w} P_{\delta}\right) \text { (topological ramifications) }
\end{aligned}
$$

Observe that $\theta_{\delta}^{\star} \in \Theta$ for any δ !
By using [Pol86, Lem. 3.2], one can show that P_{δ} and consequently also θ_{δ}^{\star} are real-analytic $\left(C^{\omega}\right)$ in $\delta>0$.

Figure 2: Comparison to CG [BGS08] and FG [GKS19] methods.

We compute

$$
\begin{gathered}
\mathcal{P}\left(\theta^{\prime}\right) \in \arg \min _{\theta \in \Theta} I\left(\theta^{\prime}, \theta\right) \text { for } I\left(\theta^{\prime}, \theta\right)=\frac{1}{2} \operatorname{tr}\left(S_{w}^{-1}\left(\theta^{\prime}-\theta\right) S_{\theta}\left(\theta^{\prime}-\theta\right)^{\top}\right) . \\
\quad \text { (approximately) through } \\
\theta_{\delta}^{\star}=\theta^{\prime}+\operatorname{dlqr}\left(\theta^{\prime}, I_{n}, Q,\left(2 \delta S_{w}\right)^{-1}\right) \text { for "small" } \delta,
\end{gathered}
$$

dlar(•) standard routine in MATLAB, Julia, Python and so forth, but how to pick $Q \succ 0$ and does $\delta \downarrow 0$ not look problematic?

Symplectic perspective on the computation (1/5)

The algebraic Riccati equation (ARE)

$$
\begin{equation*}
P_{\delta}=Q+\theta^{\top \top} P_{\delta}\left(I_{n}+2 \delta S_{w} P_{\delta}\right)^{-1} \theta^{\prime} \tag{7}
\end{equation*}
$$

is well-understood [BLW91; LR95]. Fixed-point (DP) schemes can be unstable, elegant solution proposed in the 80s.

To start, define the pair of matrices $S_{1}, S_{2} \in \mathbb{R}^{2 n \times 2 n}$ by

$$
S=\left\{S_{1}, S_{2}\right\}=\left\{\left(\begin{array}{cc}
\theta^{\prime} & 0_{n \times n} \tag{8}\\
-Q & I_{n}
\end{array}\right),\left(\begin{array}{cc}
I_{n} & 2 \delta S_{W} \\
0_{n \times n} & \theta^{\prime \top}
\end{array}\right)\right\} .
$$

Now, consider the generalized eigenvalue problem

$$
\begin{equation*}
S_{1} x=\lambda S_{2} x, \quad x \in \mathbb{C}^{2 n} \lambda \in \mathbb{C} . \tag{9}
\end{equation*}
$$

Symplectic perspective on the computation (2/5)

Unroll $S_{1} X=S_{2} X$ J as

$$
\left(\begin{array}{cc}
\theta^{\prime} & 0_{n \times n} \\
-Q & I_{n}
\end{array}\right)\left(\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right)=\left(\begin{array}{cc}
I_{n} & 2 \delta S_{w} \\
0_{n \times n} & \theta^{\prime \top}
\end{array}\right)\left(\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right)\left(\begin{array}{cc}
J^{s} & 0_{n \times n} \\
0_{n \times n} & J^{u}
\end{array}\right)
$$

Eigenvalues come in reciprocal pairs, so without unimodular λ we have a stable and unstable subspace.

Lemma (Structure of ARE solutions [PLS80, Lem. 1])

Let P_{δ} be a solution to (7) and let $X^{s}=\left[\begin{array}{lll}X_{11}^{H} & X_{21}^{H}\end{array}\right]^{H} \in \mathbb{C}^{2 n \times n}$ denote a basis for the stable eigenspace. Then, $P_{\delta}=X_{21} X_{11}^{-1}$ and $\theta_{\delta}^{\star}=X_{11}{ }^{5} X_{11}^{-1} \in \Theta$.

Follows by direct computation (inspired by the maximum principle).

Symplectic perspective on the computation (3/5)

Eigenvector decomposition is not continuous [Lax07; Kat95].. so? One can shown that $\mathrm{fl}\left(T^{-1} A T\right)=T^{-1} A T+E$ for $\|E\|_{2} \lesssim \mu \kappa_{2}(T)\|A\|_{2}[G L 13]$.

So, ideally we find $T \in \arg \min _{T \in G L(n, \mathbb{R})} \kappa_{2}(T)$, e.g., $T \in O(n, \mathbb{R})$. We cannot simply assume symmetry, instead we use:

Lemma (Gen. real Schur decomposition [GL13, Thm. 7.7.2])
For any $A, B \in \mathbb{R}^{n \times n}$ there exist $Q, Z \in O(n, \mathbb{R})$ such that $Q^{\top} A Z$ is upper quasi-triangular and $Q^{\top} B Z$ is upper triangular.

Lemma (QZ alg. [PLS80, Thm. 8a], know since the 70s [Fat69; Wil71]!)
Consider for the pair $\left(S_{1}, S_{2}\right)$ its gen. real Schur decomposition as proposed above, then, all ARE solutions are of the form $P=U_{21} U_{11}^{-1}$, for U :

$$
\begin{equation*}
U=\binom{U_{11}}{U_{21}}=Z\binom{I_{n}}{0_{n \times n}}=\binom{Z_{11}}{Z_{21}} . \tag{10}
\end{equation*}
$$

Symplectic perspective on the computation (4/5)

If $\theta^{\prime} \in G L(n, \mathbb{R})$ (a.s.), then $S_{1} x=\lambda S_{2} x \rightarrow S_{2}^{-1} S_{1} x=\lambda x$, but
$S_{2}^{-1} S_{1} \in \operatorname{Sp}(2 n, \mathbb{R})=\left\{M \in \mathbb{R}^{2 n \times 2 n}: M^{\top} \Omega M=\Omega\right\}$ (unlock structure).
Specifically, we can define the curve $M: \mathbb{R} \rightarrow \operatorname{Sp}(2 n, \mathbb{R})$ by

$$
\delta \mapsto M(\delta)=S_{2}^{-1} S_{1}=\left(\begin{array}{cc}
\theta^{\prime}+2 \delta S_{w} \theta^{\prime-T} Q & -2 \delta S_{w} \theta^{\prime-T} \tag{11}\\
-\theta^{\prime-T} Q & \theta^{\prime-T}
\end{array}\right) .
$$

Use (11) to compute "optimal" pair ($\delta, Q(\delta)$).
Lemma (Approximately geodesic [Jon22])
For $\mathrm{Q}(\delta)=2 \delta \theta^{\top} \mathrm{S}_{w} \theta^{\prime}$ and $\delta(t)=\delta_{0}-t, t \in\left[0, \delta_{0}\right)$ then
$t \mapsto M(\delta(t)) \approx \exp (t X) M\left(\delta_{0}\right)$ is δ-approximately geodesic.
Exploit Lie group structure and define a left-invariant metric g via

$$
g_{g}(X, Y)=\langle X, Y\rangle_{g}=\left\langle d\left(L_{g-1}\right)_{g}(X), d\left(L_{g-1}\right)_{g}(Y)\right\rangle_{e}, \quad X, Y \in T_{g} S p(n, \mathbb{R}) .
$$

We have $\mathscr{L} \times \mathrm{g}=0$ (Killing), leads to bounds.

Symplectic perspective on the computation (5/5)

Original QZ algorithm due to Moler and Stewart [MS73] (so Mathworks dlqr(•) not bad).
Shorthand notation: $Q^{\star}=2^{-1} \delta^{2} \theta^{\prime T}\left(2 S_{w}\right)^{-1} \theta^{\prime}$ (damped) and $Q_{\star}=2 \delta \theta^{\top} S_{w} \theta^{\prime}$ (approx. geodesic).

Figure 3: Numerical experiments (250 per δ), computing θ_{δ}^{\star} by means of the QZ algoritm or Julia's dlar(•) routine, for $\operatorname{vec}\left(\theta^{\prime}\right) \sim \mathcal{N}\left(0, I_{n^{2}}\right)$ under different choices of Q and $S_{w}=\left(1 / n^{2}\right) I_{n}$. Each figure displays all available data.

Take away:

(I) LDPs allow for probabilistic results adapted to the process;
(II) Steady-state covariances can be linked to optimal control;
(III) Geometric thinking pays off towards fast and reliable algorithms.

Further topics:

(i) (Topological identification [JSK22]): for $\theta \in \Theta \cap G L(n, \mathbb{R})$ we have

$$
\mathbb{P}\left(\mathcal{P}\left(\widehat{\theta}_{T}\right) \nsucc \theta\right) \lesssim e^{-\mathcal{O}\left(\sigma_{\min }(\theta)^{2} a_{T}\right)} .
$$

(ii) Hyperbolic nonlinear systems and Lyapunov exponents.

Thank you! Questions?
〔色 wjongeneel.nl (slides will appear here)
® wouter.jongeneel@epfl.ch

References i

[Sim+18] Max Simchowitz et al. "Learning Without Mixing: Towards A Sharp Analysis of Linear System Identification". In: Conference On Learning Theory. 2018, pp. 439-473.
[JP19] Yassir Jedra and Alexandre Proutiere. "Sample complexity lower bounds for linear system identification". In: IEEE Conference on Decision and Control. 2019, pp. 2676-2681.
[SR19] Tuhin Sarkar and Alexander Rakhlin. "Near optimal finite time identification of arbitrary linear dynamical systems". In: International Conference on Machine Learning. 2019, pp. 5610-5618.
[JP20] Yassir Jedra and Alexandre Proutiere. "Finite-time identification of stable linear systems optimality of the least-squares estimator". In: IEEE Conference on Decision and Control. 2020, pp. 996-1001.
[SRD21] Tuhin Sarkar, Alexander Rakhlin, and Munther A. Dahleh. "Finite Time LTI System Identification". In: The Journal of Machine Learning Research 22.1 (2021).
[Mac95] J.M. Maciejowski. "Guaranteed stability with subspace methods". In: Systems \& Control Letters 26.2 (1995), pp. 153-156.
[VD96] Peter Van Overschee and Bart De Moor. Subspace Identification for Linear Systems: Theory-Implementation-Applications. Kluwer Academic Publishers, 1996.
[LB02] S. L. Lacy and D. S. Bernstein. "Subspace identification with guaranteed stability using constrained optimization". In: American Control Conference. 2002, pp. 3307-3312.
[LB03] S. L. Lacy and D. S. Bernstein. "Subspace identification with guaranteed stability using constrained optimization". In: IEEE Transactions on Automatic Control 48.7 (2003), pp. 1259-1263.
[BGS08] Byron Boots, Geoffrey J Gordon, and Sajid M. Siddiqi. "A Constraint Generation Approach to Learning Stable Linear Dynamical Systems". In: Neural Information Processing Systems. 2008, pp. 1329-1336.

References ii

[Tur+13] K. Turksoy et al. "Guaranteed stability of recursive multi-input-single-output time series models". In: American Control Conference. 2013, pp. 77-82.
[Van+00] T. Van Gestel et al. "Imposing stability in subspace identification by regularization". In: IEEE Conference on Decision and Control. Vol. 2. 2000, pp. 1555-1560.
[Van+01] T. Van Gestel et al. "Identification of stable models in subspace identification by using regularization". In: IEEE Transactions on Automatic Control 46.9 (2001), pp. 1416-1420.
[Ume+18] Jack Umenberger et al. "Maximum likelihood identification of stable linear dynamical systems". In: Automatica 96 (2018), pp. 280-292.
[ONV13] Francois-Xavier Orbandexivry, Yurii Nesterov, and Paul Van Dooren. "Nearest stable system using successive convex approximations". In: Automatica 49.5 (2013), pp. 1195-1203.
[GL17] Nicola Guglielmi and Christian Lubich. "Matrix stabilization using differential equations". In: SIAM Journal on Numerical Analysis 55.6 (2017), pp. 3097-3119.
[GKS19] Nicolas Gillis, Michael Karow, and Punit Sharma. "Approximating the nearest stable discrete-time system". In: Linear Algebra and its Applications 573 (2019), pp. 37-53.
[CGS20] Neelam Choudhary, Nicolas Gillis, and Punit Sharma. "On approximating the nearest Ω-stable matrix". In: Numerical Linear Algebra with Applications 27.3 (2020), e2282.
[NP20] Yu. Nesterov and V. Yu. Protasov. "Computing Closest Stable Nonnegative Matrix". In: SIAM Journal on Matrix Analysis and Applications 41.1 (2020), pp. 1-28.
[TK05] Hideyuki Tanaka and Tohru Katayama. "Stochastic subspace identification guaranteeing stability and minimum phase". In: IFAC Proceedings Volumes 38.1 (2005), pp. 910-915.

References iii

[BLW91] Sergio Bittanti, Alan J. Laub, and Jan C. Willems, eds. The Riccati Equation. Berlin, Heidelberg: Springer-Verlag, 1991.
[LR95] Peter Lancaster and Leiba Rodman. Algebraic Riccati Equations. Oxford University Press, 1995.
[JK21] Wouter Jongeneel and Daniel Kuhn. "On Topological Equivalence in Linear Quadratic Optimal Control". In: European Control Conference. 2021, pp. 2002-2007.
[DZ09] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Springer, 2009.
[JSK23] Wouter Jongeneel, Tobias Sutter, and Daniel Kuhn. "Efficient Learning of a Linear Dynamical System With Stability Guarantees". In: IEEE Transactions on Automatic Control 68.5 (2023), pp. 2790-2804.
[YS09] Miao Yu and Shen Si. "Moderate deviation principle for autoregressive processes". In: Journal of Multivariate Analysis 100.9 (2009), pp. 1952-1961.
[VMK21] Bart P. G. Van Parys, Peyman Mohajerin Esfahani, and Daniel Kuhn. "From Data to Decisions: Distributionally Robust Optimization Is Optimal". In: Management Science 67.6 (2021), pp. 3387-3402.
[SVK20] Tobias Sutter, Bart P. G. Van Parys, and Daniel Kuhn. "A General Framework for Optimal Data-Driven Optimization". In: arXiv preprint, arXiv:2010.06606 (2020).
[BV21] M Bennouna and Bart PG Van Parys. "Learning and decision-making with data: Optimal formulations and phase transitions". In: arXiv preprint arXiv:2109.06911 (2021).
[CK98] Marco C Campi and P. R. Kumar. "Adaptive linear quadratic Gaussian control: The cost-biased approach revisited". In: SIAM Journal on Control and Optimization 36.6 (1998), pp. 1890-1907.
[KTR19] Karl Krauth, Stephen Tu, and Benjamin Recht. "Finite-time Analysis of Approximate Policy Iteration for the Linear Quadratic Regulator". In: Neural Information Processing Systems. 2019, pp. 8514-8524.

References iv

[Pol86] Jan Willem Polderman. "A note on the structure of two subsets of the parameter space in adaptive control problems". In: Systems \& Control Letters 7.1 (1986), pp. 25-34.
[PLS80] T. Pappas, A. Laub, and N. Sandell. "On the numerical solution of the discrete-time algebraic Riccati equation". In: IEEE Transactions on Automatic Control 25.4 (1980), pp. 631-641.
[Lax07] Peter D. Lax. Linear Algebra and its Applications. Wiley, 2007.
[Kat95] Tosio Kato. Perturbation Theory for Linear Operators. Springer, 1995.
[GL13] Gene H. Golub and Charles F. van Loan. Matrix Computations. Johns Hopkins University Press, 2013.
[Fat69] A. Fath. "Computational aspects of the linear optimal regulator problem". In: IEEE Transactions on Automatic Control 14.5 (1969), pp. 547-550.
[Wil71] J. Willems. "Least squares stationary optimal control and the algebraic Riccati equation". In: IEEE Transactions on Automatic Control 16.6 (1971), pp. 621-634.
[Jon22] Wouter Jongeneel. "Stability via reverse I-projections, a symplectic perspective on the computation". In: (2022). URL: http://wjongeneel.nl/pub/num_revI_2022.pdf.
[MS73] Cleve B Moler and Gilbert W Stewart. "An algorithm for generalized matrix eigenvalue problems". In: SIAM Journal on Numerical Analysis 10.2 (1973), pp. 241-256.
[JSK22] Wouter Jongeneel, Tobias Sutter, and Daniel Kuhn. "Topological Linear System Identification via Moderate Deviations Theory". In: IEEE Control Systems Letters 6 (2022), pp. 307-312.

[^0]: ${ }^{1}$ Substantial body of work on (sub-)optimal finite-sample concentration bounds for linear systems identified via least squares estimation [Sim+18; JP19; SR19; JP20; SRD21].

[^1]: ${ }^{2}$ System: $x_{t+1}=\theta x_{t}+w_{t}$, State covariance: $S_{\theta}=\lim _{t \rightarrow \infty} \mathbb{E}_{\theta}\left[x_{t} x_{t}^{\top}\right]$, noise covariance:

 $$
 S_{w}=\mathbb{E}\left[w_{t} w_{t}^{\top}\right]
 $$

[^2]: ${ }^{3}$ VMKK21; SVK20; BV21.

[^3]: ${ }^{4}$ If θ^{\prime} has unimodular eigenvalues, then, approximation is the best we can do.

