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Stability under noisy measurements

Consider a discrete-time system on Rn

xt+1 = θxt + wt, wt i.i.d.∼ distr(0, Sw � 0) (1)

with unknown θ ∈ Rn×n, being asymptotically stable (ρ(θ) < 1). Given
measurements (x̂t)t≥0 of (1), consider the LS estimator of θ:

θ̂T =
(∑T

t=1 x̂tx̂
T
t−1

)(∑T
t=1 x̂t−1x̂Tt−1

)−1
(T ≥ n). (2)

Collect single trajectory ⊂ R3

least squares
estimation of θ,
denoted (θ̂T)⇝

Estimate θ̂T is unstable?
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But we understand the process (θ̂t)t≥0 very well?

Outstanding work1 on LS statistical identification of

xt+1 = θxt + wt (3)

that is, bounds like P(‖θ̂t − θ‖p ≤ δ) ≥ 1− β for t ≥ T.

At a lower level we first like to understand qualitative behaviour, that is,
P(θ̂T qualitatively the same as θ)?

Observation: ℓp-norms not appropriate for stability.

Let θ =

(
λ C
0 λ

)
for λ ∈ (−1, 1), C� 1 and θ̂T =

(
λ C
ϵT λ

)
for ϵT > 0.

Then, ‖θ − θ̂T‖2 = ϵT yet λ(θ̂T) = {λ±
√
CϵT} [ρ(·) not a norm].

1Substantial body of work on (sub-)optimal finite-sample concentration bounds for linear
systems identified via least squares estimation [Sim+18; JP19; SR19; JP20; SRD21].
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Perhaps we can truncate the Jordan normal form?

Naïve method to (asymptotically) stabilize θ′ /∈ Θ := {θ ∈ Rn×n : ρ(θ) < 1}:
scale its unstable eigenvalues into C|z|<1. Consider the matrices

θ′=

[
1.01 10
0.01 1

]
, θ′a=

[
0.84 4.77
0.005 0.84

]
, θ′b=

[
0.99 10
0 0.99

]
.

Clipping off the unstable eigenvalues of θ′ at |λ| = 0.99 yields
θ′a with ρ(θ′a) = 0.99 and ‖θ′ − θ′a‖2 = 5.24.

However, θ′b also has ρ(θ′b) = 0.99 but with ‖θ′ − θ′b‖2 = 0.02!

SIOPT23 3/19



Problem is non-trivial, lots of related work

Towards a solution: early work by Maciejowski [Mac95], used in Sys.
Id. [VD96] (distorted).

Lacy and Bernstein [LB02] approximate Θ by {θ ∈ Rn×n : ‖θ‖2 < 1} (convex,
but conservative), related: [LB03; BGS08; Tur+13] (conservative/expensive),
regularization [Van+00; Van+01] (tuning), MLE approach [Ume+18] (expensive),
more..

Related to the nearest stable matrix problem

ΠΘ(θ
′) ∈ arg min

θ∈clΘ
‖θ′ − θ‖2, (4)

Solutions: successive convex approximations [ONV13], low-rank matrix
differential equations [GL17], elegant reparametrization of Θ̃ [GKS19; CGS20],
Nesterov and Protasov [NP20] solve (4) for polyhedral norms and
non-negative θ′.
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Optimal control approach

Projection problem (4) is mathematically beautiful but perhaps practically
not ideal: Given that θ ∈ Θ yet θ̂T /∈ Θ, do we want to project to the
boundary ∂Θ [VD96, pp. 53–60, 125–129]?

Differently: one could try to design a LQR problem whose optimal feedback
gain K⋆ ∈ Rn×n renders θ̂T + K⋆ stable.

Overlooked but early work: Tanaka and Katayama [TK05] propose a LQR
objective that is inversely proportional to Sw (clear relation to ∂Θ), yet,
without all the analysis.

Additional benefit of LQR: well-understood [BLW91; LR95], fast and
scalable (n ≈ 1000), structure preserving [JK21], e.g., ker(θ̂T) = ker(θ̂T + K⋆).
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Step 1: understand (θ̂t)t≥0 beyond P(∥θ − θ̂t∥p ≥ δ) (1/2)

Moderate scale: (aT)T such that limT→∞ aT = ∞ yet limT→∞
aT
T = 0.

Definition (Moderate Deviation Principle (MDP) [DZ09])
A sequence (θ̂T)T satisfies a MDP if there is a rate (“distance”) function
I(θ′, θ) such that for any Borel set D ⊆ Rn×n:

− inf
θ′∈intD

I(θ′, θ)︸ ︷︷ ︸
r

≤ lim inf
T→∞

1
aT

log Pθ

(
θ̂T ∈ D

)

≤ lim sup
T→∞

1
aT

log Pθ

(
θ̂T ∈ D

)
≤ − inf

θ′∈clD
I(θ′, θ)︸ ︷︷ ︸
r

.

Pθ

(
θ̂T ∈ D

)
≤ e−r·aT+o(aT)

Finding I(·, ·) can be painful..
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Step 1: understand (θ̂t)t≥0 beyond P(∥θ − θ̂t∥p ≥ δ) (2/2)

*Skipping technical assumptions, e.g., w ∼ subG.

Lemma (Least squares MDP [JSK23])
If (θ̂T)T≥0 is a sequence of least squares estimators, then ( T

aT
(θ̂T − θ) + θ)T

satisfies a MDP with rate function

I(θ′, θ) = 1
2 tr
(
S−1
w (θ′ − θ)Sθ(θ′ − θ)T

)
.

for2 Sθ = θSθθT + Sw =
∑∞

k=0 θ
kSW(θk)T.

proof: Make the results from [YS09] explicit.

Complication: I(θ′, θ) non-convex in θ ∈ Θ.

2System: xt+1 = θxt + wt , State covariance: Sθ = limt→∞ Eθ [xtxTt ], noise covariance:
Sw = E[wtwTt ].
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Step 2: enforcing stability of θ̂T (1/2)

Motivated by the MDP-related optimality results3, we construct [JSK23] a
reverse I-projection defined through

P(θ′) ∈ argmin
θ∈Θ

I(θ′, θ) for I(θ′, θ) = 1
2 tr
(
S−1
w (θ′ − θ)Sθ(θ′ − θ)T

)
. (5)

Figure 1: Schematic visualization of ΠΘ(θ
′) ∈ argminθ∈clΘ ∥θ′ − θ∥2 and P(θ′) for

different estimator realizations θ′ inside and outside of Θ.

3VMK21; SVK20; BV21.
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Step 2: enforcing stability of θ̂T (2/2)

Observations regarding P(θ′) ∈ argminθ∈Θ I(θ′, θ):

(i) I(θ′, θ) trades of distance (weighted ‖ · ‖F) against stability (Sθ);
(ii) By exploiting that I(θ̂T, θ) = (aT/T)I(

√
T/aT(θ̂T − θ) + θ, θ), one can show

that the PDF ϱθ,T of θ̂T satisfies

ϱθ,T(θ̂T) ≈ exp(−I(θ̂T, θ) · T). (6)

Thus, P(θ̂T) maximizes the RHS of (6) across all θ ∈ Θ (MLE-like).

In addition, by using ideas due to Jedra and Proutiere [JP20], one can
show that for Gaussian noise, I(θ′, θ) can be interpreted as the long-run
average expected log-likelihood ratio between observations generated
under Pθ and Pθ′ .
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On an intuitive level, we can motivate

P(θ′) ∈ argmin
θ∈Θ

I(θ′, θ) for I(θ′, θ) = 1
2 tr
(
S−1
w (θ′ − θ)Sθ(θ′ − θ)T

)
.

but can we formalize this?

Better yet, can we work with this operator?
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Main result

Theorem (Efficient identification with stability guarantees [JSK23])

For any θ ∈ Θ, the reverse I-projection has the following properties.
(i) Asymptotic consistency. limT→∞ P(θ̂T) = θ Pθ-a.s.

(ii) Finite sample guarantee. There are constants τ ≥ 0 and ρ ∈ (0, 1) that
depend only on θ such that

Pθ

(
‖θ − P(θ̂T)‖2 ≤ κ(Sw)2εn

1
2 τ(1− ρ2)−

1
2
)
≥ 1− β

for all β, ε ∈ (0, 1) and T ≥ κ(Sw)Õ(n)log(1/β)/ε2.

(iii) Efficient computation. For any θ′ /∈ Θ and Sw,Q � 0 there is a p ≥ 1,
such that for all δ > 0 we have that

θ⋆δ = θ′ + dlqr(θ′, In,Q, (2δSw)−1) ∈ Θ with ‖P(θ′)− θ⋆δ‖2 ≤ O(δp).
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Main result: comment on (i)

Not particularly surprising since P(θ′) = θ′ for all θ′ ∈ Θ.

Formally, this follows readily from continuity, convexity and limT→∞ θ̂T = θ

Pθ-almost surely [CK98].

In fact, we can prove:

Lemma (Properties of I(θ′, θ) [JSK23])

The rate function I(θ′, θ) has the following properties.
(i) I(θ′, θ) is analytic in (θ′, θ) ∈ Θ′ ×Θ.

(ii) If θ′ ∈ Θ, then the sublevel set {θ ∈ Θ : I(θ′, θ) ≤ r} is compact for
every r ≥ 0.

(iii) If θ′ ∈ Θ, then I(θ′, θ) tends to infinity as θ approaches the boundary
of Θ.
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Main result: comment on (ii)

To quantify “where” in Θ the matrix θ lives: we say that the system matrix
θ ∈ Θ is (τ, ρ)-stable [KTR19, Def. 1] for some τ ≥ 1 and ρ ∈ (0, 1) if
‖θk‖2 ≤ τρk for all k ∈ N.

As θ is (τ, ρ)-stable:

I(θ̂T,P(θ̂T)) ≤I(θ̂T, θ) = 1
2 tr
(
S−1
w (θ̂T − θ)Sθ(θ̂T − θ)T

)
≤ 1

2 tr(S
−1
w )‖θ̂T − θ‖22‖Sθ‖2

≤ 1
2nκ(Sw)‖θ̂T − θ‖22

τ 2

1− ρ2
,

Combine with a Pinsker-type inequality [JSK23]: for any θ′ ∈ Θ′ and θ ∈ Θ we
have ‖θ′ − θ‖22 ≤ 2κ(Sw)I(θ′, θ).

Interestingly, we can get a (similar) probabilistic grip on ‖θ̂T − θ‖2 using the
MDP or contemporary identification results [SR19].
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Main result: comment on (iii) (1/2)

P(θ′) ∈ argminθ∈Θ I(θ′, θ) is non-convex, how does that work?

Consider minθ∈Θ{tr(QSθ) : I(θ′, θ) ≤ r} for the smallest radius r = r that
preserves feasibility.

Taking a Lagrangian (penalty) viewpoint, equivalent to

min
θ∈Θ

tr(QSθ) + δ−1I(θ′, θ)

= min
θ∈Θ

lim
T→∞

T−1Eθ

[∑T−1
k=0 x

T
kQxk + 1

2δ x
T
k(θ

′ − θ)TS−1
w (θ′ − θ)xk

]
= min

L∈Rn×n
lim
T→∞

T−1Eθ′+L

[∑T−1
k=0 x

T
k
(
Q+ 1

2δ L
TS−1

w L
)
xk
]
,

Here, θ = θ′ + L, with L the feedback term.

For δ ↓ 0, we approach the original problem solution4.

4If θ′ has unimodular eigenvalues, then, approximation is the best we can do.
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Main result: comment on (iii) (2/2)

Let Pδ � 0 be a fixed point of Pδ = Q+ θ′TPδθ′ − θ′TPδ(Pδ + (2δSw)−1)−1Pδθ′,
then

θ⋆δ = θ′ + dlqr(θ′, In,Q, (2δSw)−1)

= Λ−1
δ θ′ for Λδ = (In + 2δSwPδ) (topological ramifications).

Observe that θ⋆δ ∈ Θ for any δ!

By using [Pol86, Lem. 3.2], one can show that Pδ and consequently also θ⋆δ
are real-analytic (Cω) in δ > 0.

Figure 2: Comparison to CG [BGS08] and FG [GKS19] methods.
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We compute

P(θ′) ∈ argmin
θ∈Θ

I(θ′, θ) for I(θ′, θ) = 1
2 tr
(
S−1
w (θ′ − θ)Sθ(θ′ − θ)T

)
.

(approximately) through

θ⋆δ = θ′ + dlqr(θ′, In,Q, (2δSw)−1) for “small” δ,

dlqr(·) standard routine in MATLAB, Julia, Python and so forth,

but how to pick Q � 0 and does δ ↓ 0 not look problematic?
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Symplectic perspective on the computation (1/5)

The algebraic Riccati equation (ARE)

Pδ = Q+ θ′
TPδ (In + 2δSwPδ)−1 θ′ (7)

is well-understood [BLW91; LR95]. Fixed-point (DP) schemes can be unstable,
elegant solution proposed in the 80s.

To start, define the pair of matrices S1, S2 ∈ R2n×2n by

S = {S1, S2} =

{(
θ′ 0n×n

−Q In

)
,

(
In 2δSw
0n×n θ

′T

)}
. (8)

Now, consider the generalized eigenvalue problem

S1x = λS2x, x ∈ C2n λ ∈ C. (9)
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Symplectic perspective on the computation (2/5)

Unroll S1X = S2XJ as(
θ′ 0n×n

−Q In

)(
X11 X12
X21 X22

)
=

(
In 2δSw
0n×n θ′T

)(
X11 X12
X21 X22

)(
Js 0n×n

0n×n Ju

)

Eigenvalues come in reciprocal pairs, so without unimodular λ we have a
stable and unstable subspace.

Lemma (Structure of ARE solutions [PLS80, Lem. 1])
Let Pδ be a solution to (7) and let Xs = [XH11 XH21]H ∈ C2n×n denote a basis for
the stable eigenspace. Then, Pδ = X21X−1

11 and θ⋆δ = X11JsX−1
11 ∈ Θ.

Follows by direct computation (inspired by the maximum principle).
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Symplectic perspective on the computation (3/5)

Eigenvector decomposition is not continuous [Lax07; Kat95].. so? One can
shown that fl(T−1AT) = T−1AT+ E for ‖E‖2 ≲ µκ2(T)‖A‖2 [GL13].

So, ideally we find T ∈ argminT∈GL(n,R) κ2(T), e.g., T ∈ O(n,R). We cannot
simply assume symmetry, instead we use:

Lemma (Gen. real Schur decomposition [GL13, Thm. 7.7.2])

For any A,B ∈ Rn×n there exist Q, Z ∈ O(n,R) such that QTAZ is upper
quasi-triangular and QTBZ is upper triangular.

Lemma (QZ alg. [PLS80, Thm. 8a], know since the 70s [Fat69; Wil71]!)

Consider for the pair (S1, S2) its gen. real Schur decomposition as proposed
above, then, all ARE solutions are of the form P = U21U−1

11 , for U:

U =

(
U11
U21

)
= Z

(
In
0n×n

)
=

(
Z11
Z21

)
. (10)
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Symplectic perspective on the computation (4/5)

If θ′ ∈ GL(n,R) (a.s.), then S1x = λS2x→ S−1
2 S1x = λx, but

S−1
2 S1 ∈ Sp(2n,R) = {M ∈ R2n×2n : MTΩM = Ω} (unlock structure).
Specifically, we can define the curve M : R → Sp(2n,R) by

δ 7→ M(δ) = S−1
2 S1 =

(
θ′ + 2δSwθ′−TQ −2δSwθ′−T

−θ′−TQ θ′−T

)
. (11)

Use (11) to compute “optimal” pair (δ,Q(δ)).

Lemma (Approximately geodesic [Jon22])
For Q(δ) = 2δθ′TSwθ′ and δ(t) = δ0 − t, t ∈ [0, δ0) then
t 7→ M(δ(t)) ≈ exp(tX)M(δ0) is δ-approximately geodesic.

Exploit Lie group structure and define a left-invariant metric g via

gg(X, Y) = 〈X, Y〉g = 〈d(Lg−1)g(X),d(Lg−1)g(Y)〉e, X, Y ∈ TgSp(n,R).

We have LXg = 0 (Killing), leads to bounds.
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Symplectic perspective on the computation (5/5)

Original QZ algorithm due to Moler and Stewart [MS73] (so Mathworks dlqr(·)
not bad).

Shorthand notation: Q⋆ = 2−1δ2θ′T(2Sw)−1θ′ (damped) and Q⋆ = 2δθ′TSwθ′

(approx. geodesic).

(a) Convergence for n = 10 (b) Time to compute θ⋆
δ for n = 10

Figure 3: Numerical experiments (250 per δ), computing θ⋆δ by means of the QZ
algoritm or Julia’s dlqr(·) routine, for vec(θ′) ∼ N (0, In2 ) under different choices of Q
and Sw = (1/n2)In . Each figure displays all available data.
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Take away:

(I) LDPs allow for probabilistic results adapted to the process;
(II) Steady-state covariances can be linked to optimal control;
(III) Geometric thinking pays off towards fast and reliable algorithms.

Further topics:

(i) (Topological identification [JSK22]): for θ ∈ Θ ∩ GL(n,R) we have

P(P(θ̂T) 6
t∼ θ) ≲ e−O(σmin(θ)

2aT).

(ii) Hyperbolic nonlinear systems and Lyapunov exponents.

Thank you! Questions?
Í wjongeneel.nl (slides will appear here)

B wouter.jongeneel@epfl.ch
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