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Simple Example..

Given some a ∈ (0, 1), compare the behaviour of a spring and a damper:

Perhaps, there is a C0 change of coordinates (homeomorphism ϕ) such that
the damper looks like the spring? Say, x = ϕ(y). However, then
ϕ−1 ◦ a ◦ ϕ = −a must hold. Since ϕ is necessarily monotone, this cannot be
true.

Regardless of choice of coordinates, we see a structural difference.
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Structure in Optimal Control

We will look at (discrete-time) dynamical systems of the form

x 7→ f(x), x ∈ V.

For example, given some dynamical control system x 7→ fu(x, u), let
u = k(x), such that we can close the loop, that is fu(x, k(x)) =: f(x).

We will observe structural equivalences (or the lack thereoff) in optimal
control problems:

arg min
f∈F

J1(f) ∼ arg min
f∈F

J2(f) ∀J1, J2 ∈ J .
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Topological Equivalence (1/2)

We speak of topological equivalence, denoted t∼, when two phase portraits are
homeomorphic and agree on the direction of time.

I Hard in continuous-time, since for ẋ = f(x) and ẏ = g(y) one needs to
work with their flows.

I In discrete-time, for xk+1 = f(xk), yk+1 = g(yk) seek ϕ such that
y = ϕ(x) relates trajectories, that is, f = ϕ−1 ◦ g ◦ ϕ must hold.
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Topological Equivalence (2/2)

Definition (Topological Equivalence): Two endomorphisms f : V → V and
g :W →W over topological vector spaces V and W are topologically
equivalent (conjugate), denoted f t∼ g, if and only if there exists a
homeomorphism ϕ : V → W such that g ◦ ϕ = ϕ ◦ f , that is, the diagram

V V

W W

f

ϕ ϕ

g

commutes.

f
t∼ g if a C0 change of coordinates relates their orbits.
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The Scalar Setting, 7 classes

Consider for some scalar a and b

x 7→ f(x), f(x) := ax, y 7→ g(y), g(y) := by.

Proposition (Topological Equivalence of Scalar Systems [Kuiper and Robbin
1973, Proposition 1.5]): Let a and b be members of the same class in R (see
Figure), then g = ϕ ◦ f ◦ ϕ−1 for

ϕ(x) = x|x|c−1, c = log(|b|)/ log(|a|).

So for example f(x) = 2x and g(y) = 8y are in class (7) and related by the
Cω map ϕ(x) = x3 while ϕ−1 = x1/3, which is merely C0 over R.

Similarity transformations would yield a continuum of systems!
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A Remark

Building upon Poincaré, Birkhoff, ... The concept of topological equivalence
shows, for example, up in the Hartman-Grobman theorem and is key in
bifurcation theory. The hope is to study a finite amount of classes instead of a
continuum.

In the context of linear control systems, Willems stated that “Because of the
obvious ... practical importance of these concepts, ... there is no doubt that
they will become standard vocabulary among practitioners.” Willems 1980.

Is this true? “... the classification of all phase portraits on a given manifold, ...
up to equivalence under homeomorphisms ... Although some results have been
obtained ... it became clear rather early that this program was too
ambitious.” Abraham and Marsden 1978.
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For Today

Regarding x 7→ f(x), think of xk+1 = Fxk, F ∈ Rn×n.

Better yet, focus on the automorphic part of f(x),

we will look at invertible
maps f(x) = Fx.
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The Real General Linear Group

Let GLn(R) := {A ∈ Rn×n : det(A) 6= 0}, with
I n2-dim Cω manifold, dense in Rn×n

I GLn(R) = GL+
n (R)

◦⋃
GL−n (R), e.g., det(X) > 0 ⇐⇒ X ∈ GL+

n (R).
I Exponential map not surjective.
I GL(i)

n (R),∀i ∈ {+,−} path-connected, yet, not simply-connected.
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The set of Asymptotically stable matrices

We are not merely interested in f(x) = Fx with F ∈ GLn(R), but we also like
a form of stability.

Let Θ := {θ ∈ Rn×n : ρ(θ) < 1} be the set of asymptotically stable matrices. Θ is
a semi-algebraic non-convex (star-convex) set.

We will usually talk about F ∈ GLn(R) ∩Θ, that is limn→∞ f
n(x) = 0 ∀x.
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Characterizing Equivalence

Theorem (Topological Equivalence of Asymptotically Stable
Systems [Robinson 1995, Theorem 9.2 page 117]): Let f(x) := Fx and
g(y) := Gy be asymptotically stable linear automorphisms on Rn. Moreover,
let X(t) parametrize a path in GLn(R), continuously depending on t ∈ [0, 1],
such that X(0) = F and X(1) = G, then, f t∼ g.
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Linear Quadratic Optimal Control (1/3)

The general (discrete-time) Linear Quadratic Optimal Control problem is given
by

minimize
{uk}k≥0

∞∑
k=0

(
xk

uk

)T(
Q S

ST R

)(
xk

uk

)
subject to xk+1 = Axk +Buk, x0 = x′
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If (A,B,C), CTC := Q, is a minimal realization, R � 0, then, u?k = K?xk

P = Q+AT (P − PB(R+BTPB)−1BTP
)
A,

K? = −(R+BTPB)−1BTPA.
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“Tuning” the pair (Q,R)?
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Linear Quadratic Optimal Control (2/3)

If in

c(x, u) =

(
x

u

)T(
Q S

ST R

)(
x

u

)
.

S 6= 0 “diagonalize” via v := R−1STx+ u, Q′ = Q− SR−1ST and
A′ := A−BR−1ST, obtain the standard LQ problem:

minimize
{vt}t≥0

∞∑
k=0

xT
kQ
′xk + vkRvk︸ ︷︷ ︸

stage cost c′(xk,vk)

subject to xk+1 = A′xk +Bvk︸ ︷︷ ︸
xk 7→σ′(xk,vk)

, x0 = x′
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stage cost c′(xk,vk)

subject to xk+1 = A′xk +Bvk︸ ︷︷ ︸
xk 7→σ′(xk,vk)

, x0 = x′

For a sensible solution we need the same conditions as before, yet, additionally
rank(Q) = rank(Q′), otherwise we solve a different problem.
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Linear Quadratic Optimal Control (3/3)

Let (A,B)︸ ︷︷ ︸
x 7→σ(x,u)

be a stabilizable pair, then regarding the cost, we look at the set

C(σ) :=

(Q,R, S) ∈ Sn�0 × Sm�0 × Rn×m :

rank(Q) = rank(Q′),

∃C ∈ Rp×n : CTC = Q,

(A,C) detectable

 .
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(Q,R, S) ∈ Sn�0 × Sm�0 × Rn×m :

rank(Q) = rank(Q′),

∃C ∈ Rp×n : CTC = Q,

(A,C) detectable

 .

“Tuning” (Q,R, S) ∈ C(σ)? Example: Trimpe and D’Andrea 2012, their
motivation was to penalize ‖uk − uk−1‖

idsc.ethz.ch/research-dandrea/research-projects/archive/balancing-cube
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Topological Perspective on Tuning (1/2)

Introduce a orientation-dependent version of C(σ) Given a σ ∈ Σ such that
A ∈ GL(n,R) and define C(i)(σ), (i) ∈ {+,−} by

C(i)(σ) :=

(Q,R, S) ∈ C(σ) :
A ∈ GL(i)

n (R),

A′︸︷︷︸
A−BR−1ST

∈ GL(i)
n (R)

 .

Theorem (Topological Equivalence in LQ regulation, [JK20]): Let
A ∈ GL(i)

n (R), (i) ∈ {+,−}and let x 7→ σ?1(x) be the optimal LQ regulated
closed-loop time-one map corresponding to an arbitrary triple
(Q1, R1, S1) ∈ C(i)(σ), that is x 7→ (A+BK?

1 )x = σ?1(x).Analogously, define
σ?2 for some arbitrary triple (Q2, R2, S2) ∈ C(i)(σ). Then, σ?1

t∼ σ?2 .

Proof sketch: x 7→ σ?j (x) is of the form Λ−1
j A′jx with Λj ∈ GL+

n (R).
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Topological Perspective on Tuning (2/2)

Proof sketch: x 7→ σ?j (x) is of the form Λ−1
j A′jx with Λj ∈ GL+

n (R).

I c(x, u) = xTQx+ uTRu =⇒ A ≡ A′: immediate equivalence. Recall, this
form dominates the literature, what are they tuning?

I Let A ∈ GL(i)
n (R), then since A′ = A−BR−1ST, S can push A′ out of

GL(i)
n (R): bifurcation.

I Consequences for Inverse Optimal Control,given any K′ ∈ Rm×n:

xT(K −K′)T(K −K′)x =

(
x

Kx

)T(
K′TK′ −K′T

−K′ Im

)(
x

Kx

)
.
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The Real Symplectic Group

A different point of view.

Let the billinear form ω : R2n × R2n → R be defined as ω(x, y) = xTΩy for
Ω ∈ R2n×2n as given by

Ω =

[
0 −In
In 0

]
.

Then, define the real Symplectic group by
Sp(2n,R) := {M ∈ R2n×2n : MTΩM = Ω}.
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Symplectic Perspective (1/2)

Define M ∈ Sp(2n,R) (Hamiltonian) by

M :=

[
A′ +BR−1BTA′−TQ′ −BR−1BTA′−T

−A′−TQ′ A′−T

]
.

Assume that (Q,R, S) is parametrized by γ ∈ [0, 1], that is, let
A′(γ) := A−BR(γ)−1S(γ)T, Q′(γ) := Q(γ)− S(γ)R(γ)−1S(γ)T and define
M(γ) ∈ Sp(2n,R) accordingly.

Theorem (Topological Equivalence via the Symplectic Group, [JK20]): Let
A ∈ GLn(R) and let γ ∈ [0, 1] parametrize a curve (Q,R, S)(γ) ⊂ C(σ) such
that both (Q,R, S)(0) and (Q,R, S)(1) correspond to feasible LQR problems
with optimal closed-loop maps σ?(x)(0) and σ?(x)(1).Then, σ?(0) t∼ σ?(1) if
there exists a continuous path [0, 1] 7→M [0, 1] in Sp(2n,R) from M(0) to
M(1).
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Symplectic Perspective (2/2)

M(γ) :=

[
A′(γ) +BR(γ)−1BTA′(γ)−TQ′(γ) −BR(γ)−1BTA′(γ)−T

−A′(γ)−TQ′(γ) A′(γ)−T

]
.

The asymptotically stable automorphic case.

Relates to adjoint systems also being topologically equivalent.
Can this be generalized to other Hamiltonians?
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Example: Bifurcation by tuning

Consider the LQR problem for B = I2, R = I2, Q = 10 · I2 and

A =

(
0 −1
1 0

)
, S(ε) =

(
ε 0
0 −ε

)
, ε ∈ R≥0.

See that for all ε < 1, S(ε) ∈ C(σ), i.e., det(A− S(ε)︸ ︷︷ ︸
A′

) = −ε2 + 1. Increasing

ε induces a bifurcation.

(a) (ε = 0) (b) (ε = 0.5) (c) (ε = 2)

Figure: A few closed-loop trajectories as a function of S(ε).
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Example: Poincaré maps (1/3)

In continuous-time: ẋ = Ax, x(0) = x′ leads to x(t) = eAtx′. Sampling
(µ > 0) then leads to x 7→ eAµx: orientation preserving map.

The same holds for linearizations of Poincaré maps P : Σ→ Σ, that is,
ξ 7→ ∂ξP |ξ=0ξ preserves orientation, see Arnold 1988; Kuznetsov 2004.

What about controlled Poincaré maps?
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Example: Poincaré maps (2/3)

Consider the affine dynamical control system given by:

ṙ(t) = 2r(t)− 2 + u(t),

θ̇(t) = 1.

Desire, stabilize the unstable orbit O := S1. Let u(t) be constant on the
intervals [2πk, 2π(k + 1)), then, the (forced) return map for
Σ = {(x1, 0) : x1 ≥ 0}, becomes

rk+1 = P (rk, uk) = e4πrk +
(1

2e
4π − 1

2

)
uk + 1− e4π.

Since 1 = P (1, 0), linearize around r = 1, that is, for ξ := r − 1 obtain the
local linear model:

ξk+1 = e4πξk +
(1

2e
4π − 1

2

)
uk =: Aξξk +Bξuk.
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Example: Poincaré maps (3/3)

Given
ξk+1 = e4πξk +

(1
2e

4π − 1
2

)
uk =: Aξξk +Bξuk.

Design for (Q,R) = (1, 1) the LQR gain K?
ξ .

Compare with another
stabilizing gain K̃, satisfying, |K?

ξ − K̃| < 3.5 · 10−6.

(a) Trajectories under K?
ξ (LQR). (b) Trajectories under K̃.

Figure: One controlled cycle for both K?
ξ and K̃.

Periodic version of damper vs. spring.
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More family members

The result extends to the whole family of Linear Quadratic (LQ) optimal
control problems, that is, dynamic games, LEQR, H∞-control, etc.
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