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Abstract— Dynamical systems are topologically equivalent
when their orbits can be mapped onto each other via a
homeomorphic change of coordinates. We will show that in
general, closed-loop systems resulting from Linear Quadratic
Optimal Control problems are all topologically equivalent.
As such, we provide new insights in structural “tuning” of
controlled behaviour.

I. INTRODUCTION

Ever since its inception and celebration, the theory of
optimal control also received critique. The cost is commonly
scalar-valued, making the optimal control selection solely
dependent on a single performance criteria, which limits
practicality [1]. To better understand the theory, as being one
of its pioneers, R. E. Kalman set out to understand the inverse
problem [2], that is, given a control policy, does there exist an
optimal control problem giving rise to this policy? To quote
his motivation “...discover general properties shared by all
optimal control laws. We might be able to separate control
laws which are optimal in some sense from those which
are not optimal in any sense.”. In this work we add to this
investigation, with an emphasis on the controlled behaviour.

In particular, we will consider the discrete-time Linear
Quadratic Regulation (LQR) problem. This is a classical set-
ting which made its appearance in many real-world systems.
There, one usually encounters the notion of “tuning” the
cost function such that the system is “sufficiently” stable.
Success-stories of this tuning can be found throughout, with
the catch being that there, linear feedback is designed for a
locally-linear system, where tuning might be needed indeed.
This note shows that, for the better or worse, if one does
have a linear system how to change the closed-loop system
behaviour structurally.

A. Related work

To classify the behaviour of a controlled dynamical system
we take a topological approach. The advantage is that we
can greatly simplify the study and pass from a continuum of
systems to just a set of classes which is usually finite. The
topological classification of linear flows and maps was pio-
neered by Kuiper and co-workers [3]. A range of these ideas
were later extended into the system theoretic direction [4].
There, the author expected that these concepts would “be-
come standard vocabulary among practitioners.”. Although
this did not became a reality, some attention has been given to
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topological feedback linearization, e.g., see [5], plus there is
recent interest in structural stability in the context of systems
biology [6]. We believe this lack of interest is in part due
to the fact that topological classification seems to be rather
coarse, plus, applications are usually not clear. In this note
we hope to provide some concrete motivation and perhaps
contribute to re-instigating this beautiful field.

As in the original work by Kuiper and Robbin, we focus on
linear dynamical systems, but this time, in line with Kalman,
driven by some optimal Linear Quadratic (LQ) regulator, or
any other policy originating from the family of LQ optimal
control problems. LQ theory is well-understood, especially
in the context of classical engineering [7] and currently in
the context of statistical reinforcement learning [8]–[10] and
optimization [11]. In the context of adaptive control, several
interesting topological results, with respect to the underlying
model, are made in [12]–[14]. Topological insights in the
resulting systems are less known, or at least, not described
as much in the modern literature. We try to fill in this gap
and provide a new interpretation of how one can change the
dynamical behaviour, structurally, via selecting appropriate
cost-matrices. To avoid confusion, we would like to stress
that the vast majority of work on topology in the context of
control, relates to network topology, which is not what this
note is about.

B. Contribution and outline

The main contribution of this note is to show that a
well-known class of optimization problems have structurally
equivalent minimizers, i.e., in optimization parlance, without
defining the class F and equivalence relation ∼, we have

arg min
x∈X

f1(x) ∼ arg min
x∈X

f2(x) ∀f1, f2 ∈ F.

Specifically, we highlight that the most common class of
Linear Quadratic (LQ) Optimal Control (OC) problems re-
sult in topologically equivalent closed-loop behaviour1. In
particular, we show that by means of tuning the cost matrices,
a bifurcation in the controlled system can only be induced
by the introduction of cross-terms. Concurrently, building
on [12], we see that a lot of structure of the underlying
system is LQ feedback invariant. These observations have
some implications, for example to reduce the dimension of
the optimal control problem, to give a new interpretation of
cross-terms in the cost or to preserve structure from a corre-
sponding continuous-time problem. Although the arguments
are simple, to the best of our knowledge, this is the first time
they appear.

1Preliminary arguments appeared in [15].
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Fig. 1: We speak of topological equivalence, denoted t∼,
when two phase portraits are homeomorphic.

Notation: We denote the real n-dimensional General
Linear group by GL(n,R) := {A ∈ Rn×n : det(A) 6=
0}. The group GL(n,R) can be written as GL−(n,R) ∪
GL+(n,R), which is the disjoint union of two path-connected
sets. Here, the superscript denotes the sign of the deter-
minant, e.g., T ∈ GL+(n,R) ⇐⇒ det(T ) > 0. A
matrix A ∈ Cn×n is asymptotically stable when ρ(A) :=
maxi |λi(A)| < 1.

II. PRELIMINARIES

In this section we will introduce the notion of topological
equivalence in dynamical systems and the concept of linear
optimal control with quadratic cost functions.

A. Topological equivalence in linear dynamical systems

This part mainly highlights the work of Kuiper and Rob-
bin [3], [16], looking at dynamical systems of the form

x 7→ f(x), x ∈ V (1)

where the time-one map f : V → V is a linear en-
domorphism2 over a finite-dimensional topological vector
space V. Then, we say that two dynamical systems are
topologically equivalent when their phase-portraits are home-
omorphic3 [17],[18, Chapter 2] (see Figure 1). The purpose
of this tool is to characterize classes of dynamical systems
giving rise to qualitatively similar trajectories. This notion
appears in the celebrated Hartman-Grobman theorem [17,
Theorem 5.3, page 153] and is the key concept in Bifurcation
theory [18], which studies precisely this qualitative change
in dynamical systems. In fact, we speak of a bifurcation
when a system, after some parameter change, is not (locally)
topologically equivalent anymore to its initial configuration.
The notion of topological equivalence has an explicit charac-
terization in the discrete-time setting, there it coincides with
the two time-one maps being conjugates.

Definition II.1 (Topological equivalence). Two endomor-
phisms f : V→ V and g : W→W over topological vector
spaces V and W are topologically equivalent (conjugate),

2For example, for V = (Rn,+) linear maps are endomorphisms as they
preserve the group-structure of Rn. If these maps are invertible they are
called automorphisms.

3Two topological spaces X and Y are homeomorphic when there exists
a continuous bijective map ϕ : X → Y with a continuous inverse. Such a
map ϕ is called a homeomorphism.

denoted f t∼ g, if and only if there exists a homeomorphism
ϕ : V→W such that g ◦ ϕ = ϕ ◦ f , that is, the diagram

V V

W W

f

ϕ ϕ

g

(2)

commutes.

Instead of Definition II.1 one encounters the stronger
notion of linear equivalence more often. Indeed, for any
T ∈ GL(n,R) and A ∈ Rn×n the diagram (2) commutes
for f(x) = Ax, g(y) = TAT−1y, i.e., ϕ(x) = Tx.
However, the quotient space under linear equivalence is still
a continuum, whereas from a topological point of view,
there are for example just 7 scalar systems [3, Proposition
1.5]. Hence, one can think of Definition II.1 as a weaker
change of coordinates. However, one should merely assume
that the map ϕ is a homeomorphism, assuming ϕ to be a
diffeomorphism implies that ϕ is linear [17, Proposition 6.1,
page 43]. To clarify Definition II.1, examine the example
from [3] given by f(x) = 2x and g(y) = 8y. Although
their eigenvalues are clearly different, qualitatively, f and
g are the same. Indeed, f t∼ g since ϕ(x) = x3 is
the corresponding homeomorphism. Observe that although
ϕ ∈ Cω(R), the inverse ϕ−1(x) = 3

√
x ∈ C0(R). Then,

Kuiper and Robbin [3] propose several conditions on the
(generalized) eigenspaces of the linear endomorphims f and
g to show topological equivalence. We will mainly focus on
two of them; stability, but most and for all: orientation.

Definition II.2 (Orientation of linear maps). We call a linear
automorphism f orientation preserving when the sign of the
signed volume of the unit cube is invariant under the map f .
This preservation (of orientation) is denoted by or(f) = 1,
otherwise or(f) = −1.

For example, given f(x) := Fx and g(y) := Gy with
F ∈ GL+(n,R) and G ∈ GL−(n,R), then, or(f) = 1
while or(g) = −1. The intuitive reason why stability and
orientation show up is as follows. Given time-one maps f
and g, the state-trajectories they induce are homeomorphic
when there is a homeomorphism ϕ such that f = ϕ◦g◦ϕ−1.
The link with stability follows from the observation that this
definition implies that fn = ϕ◦gn◦ϕ−1 must hold for any n,
that is, the direction of time is enforced. As ϕ will be either
orientation preserving or reversing, Definition II.1 implies
that or(f) = or(g). In fact, orientation is a topological in-
variant [19, Chapter 6, 10], such that for two automorphisms
f and g, f t∼ g, only if or(f) = or(g). When f is not
an automorphism, then, the orientation of f is only defined
over its (invariant) automorphic domain. In the scalar case,
the orientation can be interpreted as spring vs damper-like
behaviour, in higher dimensions one can think of the map
relating to a flow or not, see Remark II.4 below. At last we
state the main tool of this section, which supplies us with an
easy sufficient condition to assess f t∼ g.
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Theorem II.3 (Topological equivalence of asymptotically
stable systems [17, Theorem 9.2 page 117] ). Let f(x) :=
Fx and g(y) := Gy be asymptotically stable linear auto-
morphisms on Rn. Moreover, let X(t) parametrize a path
in GL(n,R), continuously depending on t ∈ [0, 1], such that
X(0) = F and X(1) = G, then, f t∼ g.

The key in Theorem II.3 is to demand that F and G
are members of the same path-connected component of
GL(n,R), hence the maps f and g have the same orientation.

Remark II.4 (Orientation in practise). Orientation might
seem like an esoteric property, but it makes its appearance
especially often when one discretizes a continuous-time
problem. For instance, sampling any solution to ẋ = Ax
yields the time-one map x 7→ exp(µA)x for some sampling
step µ > 0. It can be seen from det(exp(A)) = exp(Tr(A))
that this map is always orientation-preserving. It is known
that this observation extends to non-linear systems [20], e.g.,
the same holds (locally) for any Poincaré return map, which
follows from the Liouville formula (cf. [18, Chapter 1]). This
means that if one imposes a control law on these discretized
maps which flips the orientation, then, this resulting map
could never relate to some continuous flow.

B. Linear quadratic optimal control

In this section we introduce the control problem at hand.
Consider the deterministic linear discrete-time system

x 7→ Ax+Bu =: σ(x, u), x ∈ Rn (3)

where A ∈ Rn×n and B ∈ Rn×m compromise a stabilizable
pair, that is, there exists a K ∈ Rm×n such that ρ(A +
BK) < 1. We will write this as σ ∈ Σ, for Σ parametrized
by the set of stabilizable pairs (A,B). Then, for some triple
(Q,R, S) ∈ Sn�0 × Sm�0 × Rn×m define the corresponding
stage-cost c : Rn × Rm → R by

c(x, u) :=

(
x
u

)T(
Q S
ST R

)(
x
u

)
. (4)

When S = 0, we refer to the (stage-)cost as being
block-diagonal. This diagonal form is well-understood and
dominates the practical and theoretical literature. Now,
following [21, Chapter 16], we can easily bring (4) to
such a block-diagonal form. Specifically, by defining v :=
R−1STx+u, Q′ := Q−SR−1ST and A′ := A−BR−1ST,
we can, equivalently to (4) under (3), consider the stage-
cost c′(x, v) := xTQ′x + vTRv, under the time-one map
x 7→ A′x+Bv. This transformation allows for applying all
celebrated block-diagonal tools.

In what follows we will assume (without loss of gener-
ality), that the input u is linear state-feedback, that is, for
some K ∈ Rm×n, u := Kx. Then, fixing some σ ∈ Σ, we
define the cost function J : Rn × Rm×n → R ∪ {±∞} by

J(x′,K) :=
∑∞
k=0 c(xk,Kxk),

subject to xk+1 = σ(xk,Kxk) ∀k, x0 = x′.
(5)

To optimize this cost over K and have a meaningful
solution, assume the stage-cost is non-negative and that

(A,C) is a detectable pair for C ∈ Rp×n defined by
CTC := Q with rank(Q) = rank(Q′). It is known
that under the aforementioned conditions (cf. [21, Chapter
13-16]), arg minK J(x′,K) is given by K? = −(R +
BTPB)−1BTPA′ −R−1ST, where P ∈ Sn�0 is the unique
solution to the Algebraic Riccati Equation (ARE)

P = Q′ +A′TPA′ −A′TPB(R+BTPB)−1BTPA′, (6)

such that the optimal closed-loop time-one map x 7→
σ(x,K?x) =: σ?(x) is asymptotically stable. With respect
to (5), the aforementioned domain of (Q,R, S) and the
definition of Q′, we define the set of cost-matrices C(σ) by

C(σ) :=

(Q,R, S) :

Q− SR−1ST � 0,

rank(Q) = rank(Q′),

∃C ∈ Rp×n : CTC = Q,

(A,C) detectable

 . (7)

1) Linear quadratic dynamic games: One of the results
of this note is that the qualitative behaviour of the whole
family of block-diagonal Linear Quadratic Optimal Control
problems is the same. To exemplify what we mean by this
“family”, we introduce a different, but analogous, block-
diagonal cost function to (5). We introduce what is called
a two-player zero-sum dynamic game, e.g., see [22]. There,
given some δ ∈ R≥0, the stage-cost is defined by the function
g : Rn × Rm × Rd → R

g(x, u, w) := xTQx+ uTRu− δ−1wTw. (8)

The variable w will act as an adversary. Given some D ∈
Rn×d, let σw(x, u) := σ(x, u)+Dw and again, without loss
of generality, assume w to be linear in x, that is w := Lx for
some L ∈ Rd×n. such that we can define the cost function
J : Rn × Rm×n × Rd×n → R ∪ {±∞} by

J(x′,K, L) :=
∑∞
k=0 g(xk,Kxk, Lxk),

subject to xk+1 = σLxk
(xk,Kxk) ∀k, x0 = x′.

(9)

Under conditions analogous to the ones from before (see
[22, Chapter 3]), a solution to minK maxL J(x′,K, L)
exists and is given by the static gains K?(δ) :=
−R−1BTP (δ)Λ(δ)−1A and L?(δ) := δDTP (δ)Λ(δ)−1A.
Here, the pair (P (δ),Λ(δ)) compromises a solution to the
Generalized Algebraic Riccati Equation (GARE):

P = Q+ATPΛ−1A,

Λ =
(
In +

(
BR−1BT − δDDT

)
P
)
.

(10)

The parameter δ relates to how much adversarial action we
allow for. Crossing what is called the “breakdown-point”
δ̄ means it is “affordable” for the adversary to destabilize
the system and hence this scenario is avoided by selecting
δ ∈ [0, δ̄) (see [22], [23]). Moreover, it can be shown that
the closed-loop system matrix is asymptotically stable and
can be written as Λ(δ)−1A. This observation is the key in
showing topological equivalence in the next section.

Summarizing, we parametrize a Linear Quadratic (LQ)
Optimal Control (OC) problem by the pair (σ, J), where one
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seeks a sequence of inputs to the linear dynamical system
σ such that the quadratic cost function J , subject to σ, is
minimized. Then, we will be interested in understanding
to which topological class the corresponding optimal
closed-loop systems x 7→ σ?(x) belong.

III. TOPOLOGICAL EQUIVALENCE IN LINEAR QUADRATIC
OPTIMAL CONTROL

The main result of this note can be stated as follows: given
any two closed-loop maps f, g resulting from LQ optimal
control problems with block-diagonal cost, then f and g
are topologically equivalent. This means that the qualitative
behaviour of these controlled systems is invariant under
“tuning” of the cost. To proceed, we introduce a orientation-
dependent version of the set in (7). Given a σ ∈ Σ such that
A ∈ GL(n,R) then define C(i)(σ), (i) ∈ {+,−} by

C(i)(σ) :=

{
(Q,R, S) ∈ C(σ) :

A ∈ GL(i)(n,R),

A′ ∈ GL(i)(n,R)

}
. (11)

Here, GL(i)(n,R) relates to either GL+(n,R) or GL−(n,R).
Now we can state the main result.

Theorem III.1 (Topological equivalence in LQ regulation).
Fix some σ ∈ Σ with A ∈ GL(i)(n,R), (i) ∈ {+,−}. Let
x 7→ σ?1(x) be the optimal LQ regulated closed-loop time-
one map corresponding to an arbitrary triple (Q1, R1, S1) ∈
C(i)(σ), that is x 7→ (A + BK?

1 )x = σ?1(x) with K?
1 the

minimizing argument in (5). Analogously, define σ?2 for some
arbitrary triple (Q2, R2, S2) ∈ C(i)(σ). Then, σ?1

t∼ σ?2 .

Proof. Since the cost-matrices are elements of C(i)(σ) we
use the transformations as set forth in Section II-B. Then, it
is known (see [21, Chapter 12]) that the closed-loop system
matrices can be written as (In + BR−1j BTPj)

−1A′j =:

Λ−1j A′j for Pj ∈ Sn�0 the solution to the algebraic Ric-
cati equation (6) under (Qj , Rj , Sj) j ∈ {1, 2}. Now we
claim that Λj ∈ GL+(n,R). Let N := BR−1BT and
M := Pj , which are both symmetric positive semidefinite.
Then observe that given some eigenpair (λ, v) such that
NMv = λv, multiplying from the left with vTMT implies
that vTMvλ = vTMTNMv ≥ 0 and hence, by construction
of M and N , that λ ≥ 0. Therefore, the eigenvalues of
Λj are all strictly positive such that det(Λj) > 0. Since an
application of such a Λj does not alter the membership of
A′ to GL(i)(n,R), i.e., GL+GL(i) = GL(i), we can directly
appeal to Theorem II.3 and conclude the proof.

We see from Theorem III.1 that if (Q,R, 0) ∈ C(σ), then,
since A = A′ we have (Q,R, 0) ∈ C(i)(σ) and indeed we see
that all block-diagonal problems result in closed-loop maps
being topologically equivalent. In particular, if ρ(A) < 1,
then Ax t∼ (A+ BK?)x. Moreover, when A ∈ GL+(n,R),
then, block-diagonal LQ feedback leaves the group-structure
intact, i.e., (A + BK?) ∈ GL+(n,R). Moreover, if A is
singular, we can still apply the idea of Theorem III.1, yet we
need to restrict our discussion to the automorphic part of σ?,
which is remarkably simple since ker(A) is preserved under

block-diagonal LQ feedback (since the closed-loop matrix
is of the form Λ−1A or see [24, Lemma 3.4]). When we
introduce a non-zero S, however, the kernel of A and the
optimally LQ controlled closed-loop system matrix Λ−1A′

do not necessarily match anymore since ker(A) and ker(A−
BR−1ST) can be different.

The form of Theorem III.1 is chosen — since especially
in the block-diagonal case — it captures the central mes-
sage: without constructing explicit LQR solutions one can
easily assess a priori if some closed-loop maps will be
topologically equivalent. However, in line with Theorem II.3,
the statement could be made more general and direct by
demanding that the closed-loop maps are stable and have
the same orientation, i.e., or(Λ−11 A′1) = or(Λ−12 A′2). We
refrain from doing so and instead construct another indirect
characterization of these distinct topological classes.

When A ∈ GL(n,R), then, a minimizing solution to the
standard LQR cost (5) can be characterized via a Symplectic
matrix. Particularly, define Ω ∈ R2n×2n by

Ω =

[
0 −In
In 0

]
.

Then, define the real Symplectic group by Sp(2n,R) :=
{M ∈ R2n×2n : MTΩM = Ω}. Moreover, we speak of a
subspace Y being M -invariant, when MY ⊆ Y. Next, define
M ∈ Sp(2n,R) by

M :=

[
A′ +BR−1BTA′−TQ′ −BR−1BTA′−T

−A′−TQ′ A′−T

]
. (12)

A celebrated result — as for example communicated for
an even more general setting in [25] — is that eigenspaces
of M in (12) directly map to solutions of (6) and in fact,
the spectrum of M relates directly to the spectrum of the
optimal LQ regulated time-one map. Better yet, the relation
between M and Λ−1A′ is well-understood. Now, assume
that the triple (Q,R, S) is parametrized by some scalar
γ, that is, let A′(γ) := A − BR(γ)−1S(γ)T, Q′(γ) :=
Q(γ) − S(γ)R(γ)−1S(γ)T and define M(γ) ∈ Sp(2n,R)
accordingly. Then, loosely speaking, it turns out that when
M(γ) is a continuous curve in Sp(2n,R), then, all closed-
loop maps it parametrizes (see Section II-B) are topologically
equivalent. We formalize this in a Corollary to Theorem III.1:

Corollary III.2 (Topological equivalence via the Symplectic
Group). Fix some σ ∈ Σ with a A ∈ GL(n,R) and let γ ∈
[0, 1] parametrize a curve (Q,R, S)(γ) ⊂ C(σ) such that
both (Q,R, S)(0) and (Q,R, S)(1) correspond to feasible
LQR problems with optimal closed-loop maps σ?(x)(0) and
σ?(x)(1). Then, σ?(0)

t∼ σ?(1) if there exists a continuous
path [0, 1] 7→M [0, 1] ⊂ Sp(2n,R) from M(0) to M(1).

Proof. Since Sp(2n,R) ⊂ SL(2n,R) and we can contin-
uously deform M(0) into M(1) this must mean we do
not drop rank along the path M(γ), γ ∈ [0, 1]. Moreover,
we know that for any M ∈ Sp(2n,R) µ ∈ λ(M) ⇒
1/µ ∈ λ(M). Also, for any feasible LQR problem leading
to (12) it is known that 1 6∈ |λ(M)|, hence, when one
constructs the Jordan normal form related to such a M ,
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there are n-dimensional M -invariant stable (s) and unstable
(u) subspaces, that is M = XJX−1 with X = [Xs Xu],
J = diag(Js, Ju). In fact, it can be shown that λ(Js) =
λ(Λ−1A′), where Λ−1A′ is the optimal LQ regulated closed-
loop system matrix from Section II-B. See [25] and refer-
ences therein for more on the aforementioned results. The
prior discussion implies that if 0 6∈ λ(M(γ)) ∀γ ∈ [0, 1],
then, 0 /∈ λ(Js(γ)) and as such 0 6∈ λ(Λ(γ)−1A′(γ)).
This however means that A′(γ) ∈ GL(i)(n,R) ∀γ ∈ [0, 1],
thereby, the result follows after an application of Theo-
rem II.3.

So, although Sp(2n,R) is connected, by varying the triple
(Q,R, S) ∈ C(σ) we effectively generate disjoint connected
sets of matrices M ∈ Sp(2n,R) in (12) corresponding
to distinct topological classes of closed-loop maps they
generate. Since this result provides the link with the far
more general Maximum Principle, the hope is that similar
constructions are possible for different Hamiltonians.

Now, we are not just interested in the OC problem related
to (5), but into the whole “family of LQ problems”. To that
end, we give one example and use Section II-B.1 to extend
Theorem III.1.

Corollary III.3 (Topological equivalence in dynamic
games). Fix σ ∈ Σ, let A ∈ GL(i)(n,R) and set D := In
in (9)-(10). Moreover, consider J as in (9) for some pair
(Q,R) being such that for any δ ∈ [0, δ̄) the extremizers in
minK∈Rm×n maxL∈Rd×n J(x′,K, L) denoted by K?(δ) and
L?(δ), exist. Then, the “nominal”-, “robust”- and “worst-
case robust” optimal closed-loop maps given by f(x) :=(
A + BK?(δ)

)
x|δ=0, g(x) :=

(
A + BK?(δ)

)
x|δ∈(0,δ),

h(x) :=
(
A + BK?(δ) + L?(δ)

)
x|δ∈(0,δ), respectively, are

topologically equivalent.

Proof. Let the pair (P (δ),Λ(δ)) correspond to a solution
to (10). Recall from for example [22, Chapter 3] that f(x) =
Λ−1(δ)Ax|δ=0, g(x) =

(
In−δP (δ)

)
Λ−1(δ)Ax|δ∈(0,δ) with

(δ−1In − P (δ)) � 0 and h(x) = Λ−1(δ)Ax|δ∈(0,δ). Then,
all that we need to show is that Λ(δ)|(0,δ) ∈ GL+(n,R).
It follows from Theorem III.1 that limδ↓0 Λ(δ) = (In +
BR−1BTP ) ∈ GL+(n,R). Since GL(n,R) has two con-
nected components, Λ(δ) is continuous in δ (this can be
shown as in [26]) and starts in GL+(n,R), it must remain in
that group. This concludes the proof.

Corollary III.3 indicates that the adversaries these dynamic
games hedge against are somewhat natural.

Remark III.4 (Beyond standard LQR). Corollary III.3
shows that Theorem III.1 is not limited to the “standard”
LQR problem. Hence, we would like to point to related
problems, displaying similar, if not equivalent, structure.
When considering an exponential utility function in (5)
subject to a linear Gaussian system — which is called the
LEQR problem — then, its optimal policy coincides with
that of a dynamic game [22], [23], [27]. Similar algebraic
structures are also seen in distributionally robust control and
estimation [28], [29]. Note that in the stochastic case, the

topological equivalence is with respect to the closed-loop
mean state processes. Also, to be able to use Theorem II.3
in a discounted setting, stability must be explicitly verified.

We can conclude, however, without a formal proof, that
given any two optimal closed-loop time-one maps resulting
from any two block-diagonal LQ OC problems, they are
topologically equivalent. The crux is that all these optimal
closed-loop maps are of the form x 7→ Λ−1Ax for some
Λ ∈ GL+(n,R). Now, if the cost is not block-diagonal, the
cross-terms will determine, for the better or worse, to which
topological class the closed-loop map belongs.

This note also showed again the importance of correctly
identifying ker(A) and or(A). If some estimate of A, say
Â, satisfies or(A) 6= or(Â), then, for standard (block-
diagonal) LQR, no matter the tuning, the simulated and real
behaviour will always be structurally different. This problem
was recently addressed in [30] where the authors project the
estimated system matrix to the set of asymptotically stable
matrices and characterize the probability of identifying the
correct orientation. Correctly identifying the orientation of
the drift term A also relates to the recent work [31] were an
adaptive control law is designed to deal with a map of the
form x 7→ iAx, x ∈ Rn for some unknown (adversarially
chosen) i ∈ {−1, 1}. As hinted at before, one can also apply
these ideas in the stabilization of periodic orbits, for example,
in robot locomotion. This work provides new motivation
for why one could select a local LQ regulator over a more
traditional PID regulator.

IV. MORE ON “TUNING”

In the vast majority of work on LQ optimal control the
stage-cost (4) is diagonal (cf. [2], [32]). However, we will
emphasize that one should not underestimate the applicability
of S. One successful example is presented in [33], where the
authors exploit the cross-term in the cost with the purpose
of penalizing subsequent input deviations.

Moreover, assume we have access to data sampled from
a closed-loop linear system. We might ask, is there a LQ
Optimal Control (OC) problem which gives rise to this
system? This is a question of inverse optimal control (IOC).
It was remarked in [34] that any linear feedback gain K ′ ∈
Rm×n corresponds to some LQ OC problem, e.g., define
the stage-cost c(x,Kx) := xT(K − K ′)T(K − K ′)x. So,
from an IOC point of view, the matrix S seems not the most
interesting, everything is possible. Looking at this from the
tuning point of view, by excluding S, you are restricting the
behaviour of the closed-loop system to maps with at least
the same orientation as the automorphic part of Ax, e.g., in
the scalar case, by changing the pair (Q,R), one cannot
go from spring- to damper-like behaviour. Therefore, we
propose that if one wants to tune, if a change in behaviour
is desired, change S. It is imperative to remark that when
A ∈ GL(n,R), then, the LQ optimal closed-loop systems are
structurally stable with respect to a perturbation in the tuple
(A,C,R, S). At last, we briefly visualize the effect of S.
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(a) (ε = 0) A (discrete) stable counter-
clockwise spiral with or(σ?) = 1.

(b) (ε = 0.5) Due to an increase in ε the
spiral starts to shear, yet or(σ?) = 1.

(c) (ε = 2) For ε > 1 or(σ?) = −1 and
the spiralling behaviour deteriorates.

Fig. 2: Given the parameters from Example IV.1, we show a few closed-loop trajectories as a function of S(ε).

Example IV.1 (Structural Tuning). Consider the general
LQR problem from Section II-B parametrized by B = I2,
R = I2, Q = 10 · I2 and

A =

(
0 −1
1 0

)
, S(ε) =

(
ε 0
0 −ε

)
,

for some ε ∈ R≥0. We see that for all ε < 1, S(ε) ∈ C+(σ),
i.e., det(A − S(ε)) = −ε2 + 1. To illustrate the structural
change, we vary ε from 0 and 2, construct K? accordingly
and show a few closed-loop, that is x 7→ (A + BK?)x,
trajectories in Figure 2. Indeed, once S leaves C+(σ), the
behaviour changes structurally (cf. Figure 2c).
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