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Abstract

Suppose that two vector fields on a smooth manifold render some
equilibrium point globally asymptotically stable (GAS). We show that
there exists a homotopy between the corresponding semiflows such that
this point remains GAS along this homotopy.
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1 Introduction In the context of what we call today Conley index theory (see
Section A), Charles C. Conley himself posed the following “converse question”
in the late 1970s: “To what extent does the homotopy index [Conley index]
itself determine the equivalence class of isolated invariant sets which are re-
lated by continuation?” [Con78, p. 83]. Then, recently, Matthew D. Kvalheim
proved that uniquely integrable C0 vector fields, on a C∞ manifold M , ren-
dering a compact set A ⊆M asymptotically stable, are homotopic on an open
neighbourhood U ⊇ A such that throughout the homotopy the vector fields
do not vanish on U \ A [Kva23, Thm. 1]. Connecting this result to Conley’s
question, a follow-up question (revitalized) by Kvalheim—which is the central
question of this note—is the following:
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2 1 Introduction

Question: “Are, dynamical systems that render a set A asymptotically stable,
homotopic through dynamical systems that preserve this notion of stability?”

This question, in one form or another, inspired several works, for instance,
[Rei92; MRS00; JS24]. Here, we will elaborate on commentary by the author
in [JS24]. Specifically, in the seminal paper “Asymptotic stability equals ex-
ponential stability, and ISS equals finite energy gain—if you twist your eyes”
from 1999, Lars Grüne, Eduardo D. Sontag and Fabian R. Wirth showed that
asymptotic stability “equals” exponential stability in the sense that if an equi-
librium point is asymptotically stable under some vector field on Rn, then,
there is a suitable change of coordinates rendering this point exponentially
stable [GSW99]. Such a change of coordinates is understood to be instanta-
neous. However, by leveraging their work, we show in this note that asymptotic
stability can (almost) always be continuously “transformed” into exponential
stability, while preserving asymptotic stability throughout the transformation,
see Theorem 3.4. Differently put, asymptotic stability equals exponential
stability—not only if you twist your eyes, but while you twist your eyes. The
key to this is to observe that we can in fact select the transformation of Grüne,
Sontag and Wirth to be an element of the orientation-preserving homeomor-
phism group on Rn, not just any homeomorphism cf. [JS24, Sec. III], see the
proof of Proposition 3.2.

This result provides a partial solution to Conley’s converse question as
it turns out that the asymptotically stable systems under consideration can
be continuously transformed into the same exponentially stable system and
hence, by transitivity, into each other. Concurrently, we emphasize in this note
that results of this form typically extend to discontinuous vector fields when
solutions are understood in the sense of Filippov. We also discuss intimate
connections with optimization (e.g., see Example 3.2) and optimal transport
(e.g., see Example 4.1).

1.1 Related work It can be argued that questions of the form above emerged
from studies aimed at classifying manifolds, maps, vector fields and so forth. A
successful, yet coarse, resolution has been found in the study of these objects
up to homotopy, e.g., motivated early on by the fundamental group being
homotopy invariant, Hopf’s degree theorem, CW complexes, intractability of
topological equivalence and more work at the intersection of topology and
dynamical systems.

We cannot do justice here to the wealth of work in this area, but let us
mention that inspired by Aleksandr Andronov, Lev Pontryagin, René Thom,



1.1 Related work 3

Maurico Peixoto, George D. Birkhoff, John Milnor and several others, it was
in particular Stephen Smale highlighting that this intersection is an interesting
one for both topology and dynamical systems. As put by Sheldon Newhouse:
“... one of the great influences that Steve had, at least on me and I think
many others, aside from excitement, was the whole idea that one might get a
structure theory for general dynamical systems. That such a general structure
theory for most systems could exist I think was a goal of Poincare and Birkhoff,
and somehow in the intervening years, it was lost sight of by people working on
specialized problems. The idea of getting a global structure of all systems has
spawned a lot of development in the past, and it is still going on.” [HMS12, p.
183].

Indeed, after seminal work by Smale on the qualitative classification of dy-
namical systems [Sma67], several homotopy results appeared being concerned
with Morse-Smale vector fields, e.g., see [Asi75; NP76; Fra79]. Similarly, one
can study if gradient vector fields are homotopic through gradient vector fields,
e.g., while restricting equilibria [Par90], see also [Rei91; Kva23] for work close
in spirit to ours. These works were typically concerned with structural sta-
bility and the study of the topology of spaces of dynamical systems, that is,
to understand when dynamical systems are in some sense close or equivalent,
e.g., see [SS75] for pointers and further results.

Then, in control theory, these tools (i.e., certain homotopy invariants) were
used to construct necessary conditions for feedback controllers to exist, e.g.,
if a desirable (closed-loop) dynamical system belongs to a certain homotopy
class, then, there must be at least exist some feedback that renders the control
system a member of this class, regardless of it resulting in the actual desirable
system, e.g., see [Bro83; KZ84; Zab89; Cor90].

Most of these results have in common that the original objects are homo-
toped to something simple, something “canonical” where we do our analysis
and computations. For instance, in the context of control systems, when our
goal is stabilization of the origin on Rn through feedback, then, the canonical
differential equation is ẋ = −x and we would like our closed-loop dynami-
cal system to be in some qualitative sense equivalent to this equation. This
is precisely how the “index condition” by Krasnosel’skĭı and Zabrĕıko is de-
rived [KZ84, Sec. 52]. Clearly, necessary conditions of this form are only as
valuable as the homotopy class is distinctive, e.g., although the index condition
is powerful, it cannot differentiate between ẋ = x and ẋ = −x on R2. This is
precisely what motivates us, we expect that understanding Conley’s converse
question can lead to stronger necessary conditions for continuous stabilizing
feedback to exist.

Besides possibly stronger necessary conditions for continuous stabilization,
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the study of Conley’s converse question directly relates to understanding topo-
logical properties of spaces of stable dynamical systems (as was partial moti-
vation for our previous work [JS24]). This is of practical importance as several
frameworks in optimal control and reinforcement learning aim to optimize over
precisely such a space, e.g., moving from a pre-stabilized system to an opti-
mally controlled system, we point to [Ber+17; Faz+18; Wan+22; FGFT24]
and references therein.

Before detailing further technicalities, we recall that Conley’s converse
question is not trivial.

Example 1.1 (Trivial convex combinations can fail). Consider a linear differ-
ential equation ẋ = A(s)x on R2 parametrized by the matrices

[0, 1] 3 s 7→ A(s) := s ·
(
−1 10
0 −1

)
+ (1− s) ·

(
−1 0
10 −1

)
.

Both A(0) and A(1) correspond to global asymptotically stable systems, yet,
for s = (1/2) we find that the system ẋ = A(s)x is unstable. Hence, we cannot
just construct straight-line homotopies between stable vector fields and expect
that stability is preserved. We know from [JS24] that instead, for linear vector
fields we should homotope via the canonical ODE ẋ = −x. Explicitly, one
could consider the following path of linear vector fields defined by

H(x; s) :=



(
−1 (1− 2s) · 10

0 −1

)
x s ∈ [0, 1/2](

−1 0

(2s− 1) · 10 −1

)
x s ∈ (1/2, 1]

.

◦

Notation and preliminaries Let r ∈ N∪{∞}, then, Cr(U ;V ) denotes the
set of Cr-smooth functions from U to V . The inner product on Rn is denoted
by 〈·, ·〉 and Sn−1 = {x ∈ Rn : ‖x‖2 = 1} is the embedded unit sphere in Rn.
By cl(W ) we denote the (topological) closure of a set W ⊆M and by int(W )
we denote its interior. The identity map p 7→ p on a space M is denoted
by idM and tangent spaces of sufficiently regular manifolds N are denoted by
TqN , for q ∈ N , with TN denoting the corresponding tangent bundle. Given
a function V : M → R, let V −1(c) denote the level set {p ∈ M : V (p) = c}.
We typically use ϕ to denote a (semi)flow. If this flow comes from a vector
field X, we write ϕ(·;X), similarly, if ϕ is parametrized by s ∈ [0, 1] we write
ϕ(·; s), that is, we typically overload the meaning of ϕ.
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A homotopy [0, 1] ×M 3 (s, p) 7→ H(s, p) is said to be an isotopy when
p 7→ H(s, p) is a topological embedding for all s ∈ [0, 1]. A homeomorphism ψ :
Rn → Rn is said to be a stable homeomorphism when it is a finite composition
of homeomorphisms that equal the identity map on some—not necessarily the
same—non-empty open subset of Rn. We denote by Homeo(Rn;Rn) the group
(under composition) of homeomorphisms ψ : Rn → Rn. Additionally, we
denote by Homeo+(Rn;Rn) ⊂ Homeo(Rn;Rn) the subgroup of all orientation-
preserving1 homeomorphisms.

A function α : R≥0 → R≥0 is said to be of class K when α is strictly
increasing and α(0) = 0. If, additionally lims→+∞ α(s) = +∞, then, α is
of class K∞. These type of functions are called comparison functions, e.g.,
see [Hah67; Kel14].

1.2 Dynamical systems In this note we study deterministic, finite-dimensional,
time-invariant, continuous, (global) semi-dynamical systems comprised of the
triple Σ := (Mn, ϕ,R≥0). Here, Mn will be a smooth n-dimensional manifold
diffeomorphic to Rn, which we denote by Mn 'd Rn, and ϕ : R≥0×Mn →Mn

is a global semiflow, that is, a continuous map that satisfies for any p ∈ Mn:
(i) ϕ(0, p) = p (the identity axiom); and (ii) (ϕ(s, ϕ(t, p)) = ϕ(t+ s, p) ∀s, t ∈
R≥0 := {t ∈ R : t ≥ 0} (the semigroup axiom). We will usually write ϕt(·)
instead of ϕ(t, ·). In particular, we study semiflows generated by continuous
vector fields over Mn, that is, when ϕ satisfies

d

dτ
ϕτ (p)|τ=t = X(ϕt(p)), ∀(t, p) ∈ R≥0 ×Mn, (1.1)

whereX is a continuous section, that is, the mapX : Mn → TMn is continuous
and satisfies π ◦X = idMn for π the canonical projection (p, v) 7→ π(p, v) = p.
When Mn = Rn, then, the identification TRn ' Rn ×Rn results in being able
to discuss vector fields as simply self-maps of Rn. On Rn, we will work a lot
with the “canonical” differential equation ẋ = −x, but also with the identity
map x 7→ x, thus, to avoid notational confusion, we denote the corresponding
canonical vector field by −∂x, and not −idRn .

The focus on semiflows instead of flows allows us to look at sufficiently
regular discontinuous vector fields as well. This is relevant to control theory,
as the introduction of feedback usually results in a closed-loop vector field
that cannot be assumed to be continuous (e.g., think of optimal control2). This

1The reader that is unfamiliar with the notion of orientation is first directed to [GP10;
Lee12] to see orientations in the smooth case. The topological definition relies on algebraic
topology, see for instance [Hat02, Sec. 3.3].

2One might also think of topological obstructions, however, as will become clear below,
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choice of setting is also motivated by other recent work. For instance, the main
research question in [OJ24] is: “Given an exponentially stable optimization
algorithm, can it be modified to obtain a finite/fixed-time stable algorithm?”.
They provide some sufficient conditions, we will show that a more generic, yet
less constructive viewpoint is also possible.

Let X be some vector field on Rn, possibly discontinuous. To study X, we
usually pass to some differential inclusion

ẋ ∈ F (x), (1.2)

where the set-valued map F : Rn → 2Rn
, with 2X denoting the power set of X,

is in some precise sense related to X. The intuition is to pass from a irregular
single-valued map, to a more regular set-valued map that contains the original
behaviour.

Let λd denote the Lebesgue measure on Rd, then, solutions to these dif-
ferential inclusions, are absolutely continuous curves ξ ∈ AC(I ⊆ R;Rn) such
that ξ̇(t) ∈ F (ξ(t)) for λ1-a.e. t ∈ I. Typically, F is assumed to be up-
per semi-continuous and compact, convex valued. With those assumptions in
mind, then, under mild conditions on X, a valuable solution framework follows
by applying Filippov’s operator F , that is,

x 7→ F [X](x) :=
⋂
δ>0

⋂
N∈{A⊂Rn:λn(A)=0}

convX ({x ∈ Rn : ‖x‖2 < δ} \N) .

Then, solutions to
ẋ ∈ F [X](x) (1.3)

are understood to be “generalized” solutions to ẋ = X(x), usually called
Filippov solutions, i.e., solutions to (1.3) are absolutely continuous curves
ξ : I → Rn such that ξ̇(t) ∈ F [X](ξ(t)) for λ1-a.e. t ∈ I.

For more on differential inclusions and discontinuous dynamical systems,
we point the reader to [Fil88], [BR05, Ch. 1] and [Cor08].

1.3 Stability To characterize stability under a differential inclusion (1.2), we
need a few concepts. Starting with the regular case, for simplicity, let the
vector field F be single-valued and smooth. In that case, F generates a flow,
denoted ϕ(·;F ). A point x? ∈ Rn is an equilibrium point of F when F (x?) = 0
or equivalently ϕt(0;F ) = 0 ∀t ∈ R. We will set x? to be 0, unless stated
otherwise. Then, 0 is said to be globally asymptotically stable (GAS) (under
F ) when

the type of discontinuities we consider do not allow for overcoming those obstructions, in
general [Rya94].
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(s.i) 0 is Lyapunov stable, that is, for any open neighbourhood Uε 3 0 there
is an open set Uδ ⊆ Uε such that ϕt(Uδ;F ) ⊆ Uε ∀t ∈ R≥0;

(s.ii) 0 is globally attractive, that is, limt→+∞ ϕ
t(x0;F ) = 0 for all x0 ∈ Rn.

Remark 1.2 (On global stability). Although we work with Rn, or Mn 'd Rn,
we take a topological approach akin to [BH06] and hence the definition of
GAS is as above. When working with metrics, one typically says more, e.g.,
see [Wil69; LSW96], there, a metric is used to characterize how Lyapunov
stability can be truly turned non-local (e.g., let Br(x) be some r-metric ball
at x, then, there is a some K∞ function δ such that for any ε we have that
ϕt(Bδ(ε)(x)) ⊆ ϕt(Bε(x)) ∀t ≥ 0.) In general these definitions are not equiva-
lent, however, for being GAS on Rn, they are [ABB97]. ◦

Due to the work of Lyapunov [Lia92], we know that to reason about sta-
bility, it is worthwhile to look for “potential functions” that capture stability,
illustrated by the fact that his theory effectively replaced the definitions of
stability. Specially, we look for a function V ∈ C∞(Rn;R≥0), satisfying the
following properties:

(V.i) V (x) > 0 for all x ∈ Rn \ {0} and V (0) = 0;

(V.ii) 〈∇V (x), F (x)〉 < 0 for all x ∈ Rn \ {0};

(V.iii) V is radially unbounded, that is, V (x)→ +∞ for ‖x‖2 → +∞.

Property (V.iii) implies sublevel set compactness and is sometimes referred
to as weak coercivity. We call such a function a (smooth, strict and proper)
Lyapunov function (with respect to the pair (F, 0)). This note is all about GAS,
so we will omit “strict” and “proper” from now on. Then, based on converse
theory by Massera, Kurzweil, Wilson and several others [Mas56; Kur63; Wil69;
FP19], we can appeal to the celebrated theorem stating that 0 is GAS if and
only if there is a (corresponding) smooth Lyapunov function [BR05, Thm. 2.4].

A generalization of the above to differential inclusions (1.2) is as follows.

Definition 1.1 (Strong Lyapunov pairs [CLS98, Def. 1.1]). A pair of functions
(V,W ) ∈ C0(Rn;R≥0), with V being C∞-smooth on Rn and W being C∞-
smooth on Rn \ {0}, is said to be a C∞-smooth strong Lyapunov pair for
the vector field F as in (1.2), provided that F is upper semi-continuous and
compact, convex valued, plus, the following conditions hold:

(i) V (x) > 0 and W (x) > 0 on Rn \ {0}, with V (0) = 0;

(ii) The sublevel sets of V are compact; and
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(iii) maxv∈F (x)〈∇V (x), v〉 ≤ −W (x) on Rn \ {0}.

The preposition “strong” comes from the fact that we look at all solutions
satisfying (1.2). Similarly, one could require that at least one solution is stable
and construct a “weak” version of Definition 1.1.

For further references, and generalizations of Lyapunov’s stability theory,
we point the reader to [BS70; Son98; BR05; BH06; GST12].

Before closing this section, we explicitly illustrate why working with C∞

or even C0 vector fields is arguably overly restrictive when interested in qual-
itative stability questions. We start with a simple example.

Example 1.3 (A semiflow corresponding to a vector field with bounded dis-
continuities). Consider the following discontinuous vector field on R:

ẋ = X1(x) := −sgn(x) :=


1 x < 0

0 x = 0

−1 x > 0

. (1.4)

Now, consider the map ϕ1 : R≥0 × R→ R defined through

(t, x) 7→ ϕt1(x) :=


min{0, x+ t} x < 0

0 x = 0

max{0, x− t} x > 0

. (1.5)

One can check that ϕ is a global semiflow, describing a solution (e.g., in the
sense of Carathéodory, Krasovskii or Filippov [Fil88]) to (1.4)—a discontin-
uous vector field. In particular, note that t 7→ ϕt1(x) ∈ AC since ϕt1(x) =
ϕ0

1(x) +
∫ t

0
−sgn(ϕτ1(x))dτ for any t ≥ 0. Regarding stability, consider the C∞

Lyapunov function x 7→ V1(x) := 1
2
x2 and find that ∇V1(x)X1(x) = −|x| < 0

on R \ {0} (consider a Huber loss to find a valid function W1 in the sense of
Definition 1.1). This already shows that the existence of a smooth Lyapunov
function, asserting that the origin is GAS, does not imply the existence of a
flow, nor does it imply that convergence to 0 is merely asymptotic. Now let
X2(x) := −∂x and define [0, 1] 3 s 7→ X(·; s) := (1 − s)X1 + sX2. Then, for
any s ∈ [0, 1] we have that ∇V (x)X(x; s) < 0 on R \ {0}. We know that
the flow corresponding to X2 is (t, x) 7→ ϕt2(x) := e−tx. Better yet, by direct
integration, we find that a global semiflow corresponding to X(·; s) becomes

(t, x) 7→ ϕt(x; s) :=


min{0, e−stx+ (1− e−st)(1− s)/s} x < 0

0 x = 0

max{0, e−stx+ (e−st − 1)(1− s)/s} x > 0

.
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Indeed, s 7→ ϕ(·; s) parametrizes a homotopy, along global semiflows such that
0 is GAS, from ϕ1 to ϕ2. Regarding lims→0+ ϕ(·; s), use that e−st = 1 − st +∑∞

n=2((−st)n/n!) to recover (1.5). It is interesting to note that although (1.5)
is the unique (AC) solution to ẋ ∈ F [X1](x), the solution to ẋ ∈ F [−X1](x)
is not unique, stability is key. ◦

Next, we provide an example that will appear later.

Example 1.4 (An irregular gradient flow). Let γ ∈ K∞ be smooth on (0,+∞)
and such that γ(s)/γ′(s) ≥ s (e.g., s 7→ γ(s) = s(1/2)). Now consider the
function x 7→ Vγ(x) := γ(‖x‖2) on Rn, which is C∞ on Rn \ {0}. Next,
construct the vector field

ẋ = X3(x) :=

{
−∇Vγ(x) x 6= 0

0 x = 0
. (1.6)

We cannot immediately appeal to Filippov’s framework as X3 is not necessarily
a bounded operator. However, since −∇Vγ(x) = −γ′(‖x‖2)x/‖x‖2 we can
study solutions to (1.6) directly. To that end, decompose x ∈ Rn \ {0} as x =
‖x‖2 ·x/‖x‖2 =: r ·u. It readily follows that ṙ = −γ′(r) while u̇ = 0. In general
γ′(s) > 0 ∀s ≥ 0, need not be true, but suppose this is true for our choice of γ,
e.g., pick again s 7→ γ(s) = s1/2. Now, suppose that 1/γ′(s) is continuous and
of class K on R≥0, then, we can define Γ(r) :=

∫ r
0

1/γ′(ρ)dρ, which is now of
class K∞ and hence invertible on R≥0. Under the aforementioned assumptions,
we can define a semiflow corresponding to X3 via (e.g., derived via the inverse
function theorem):

(t, x) 7→ ϕt3(x) :=

{
min{0,Γ−1(Γ(‖x‖2)− t)}x/‖x‖2 ‖x‖2 ≥ Γ−1(t)

0 else
.

We emphasize that limx→0 ϕ
t
3(x) = 0 for any t ≥ 0, which follows for t = 0

from ϕ0
3 = idRn , whereas for t > 0 we have that min{0,Γ−1(Γ(‖x‖2)− t)} = 0

for all ‖x‖2 ≤ Γ−1(t). Note, the latter is inherent to the definition of Γ. ◦

2 Further comments on related work Recently, we showed that when the
origin 0 ∈ Rn is GAS under a continuous vector field X, and if this can be
asserted using a C1 convex Lyapunov function V , then, X is straight-line ho-
motopic to −∂x, such that the origin remains GAS along the homotopy [JS24].
This is a convenient result, but clearly not a general one.

Earlier, the following homotopy on the level of vector fields, reminiscent
of Alexanders’s trick, appeared in several works (e.g., see [Rya94, p. 1603],
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[Son98, Thm. 21], [Cor07, p. 291] and [JM23, Ex. 3.4]):

(s, x) 7→ H(s, x) :=


X(x) if s = 0

−x if s = 1
1
s
(ϕs/(1−s)(x;X)− x) if s ∈ (0, 1)

. (2.1)

Unfortunately, for (2.1), 0 ∈ Rn is not known to be GAS along the path
[0, 1] 3 s 7→ H(s, x). The scalar and linear cases can be understood, however.

Example 2.1 (Stability-preserving homotopies for n = 1). As for any t ≥ 0
the only fixed point of ϕt(·;X) is 0, it follows that for n = 1, the homotopy (2.1)
preserves stability (globally), simply because the sign of x 7→ H(s, x) cannot
flip for otherwise, ϕs/(1−s)(x;X) = x must hold for some s ∈ (0, 1) and x 6=
0. ◦

Example 2.2 (Stability preserving homotopies for linear dynamical systems).
Let 0 ∈ Rn be GAS under ẋ = X(x) := Ax, for A =: TJT−1 the Jordan
form decomposition of A. Then it readily follows that 1

s
(ϕs/(1−s)(x;X)− x) =

1
s
T (es/(1−s)J − In)T−1x such that stability is preserved throughout the homo-

topy (2.1). ◦

Either way, the homotopy (2.1) does already show that there is a homotopy
that does not introduce new equilibrium points, along the homotopy. Indeed,
this has been generalized recently by Kvalheim to compact attractors on man-
ifolds [Kva23]. However, all of this is not enough to conclude on the existence
of a homotopy that preserves stability.

On the other hand, it is known that there is no reason why stability must
be preserved along such a homotopy. In the spirit of [EM02, Sec. 4.1], consider
the following family of linear vector fields on R2:

ẋ = X(x; s) := R(s)x, [0, 1] 3 s 7→ R(s) :=

(
cos(sπ) − sin(sπ)
sin(sπ) cos(sπ)

)
,

parametrizing a homotopy from X(·; 0) = ∂x to X(·; 1) = −∂x along non-
vanishing vector fields on Rn \ {0}. Note that indeed, since n = 2, the (Hopf)
indices [Mil65, p. 32] of these two “qualitatively opposite” vector fields are
equal, that is, ind0(∂x) = 1n = (−1)n = ind0(−∂x). It is precisely this weak-
ness of existing homotopy-invariants that we eventually hope to overcome by
studying more restrictive equivalence classes.

3 Stability preserving homotopies We first consider coordinates, that is,
0 ∈ Rn being (strongly) GAS under some appropriately regular vector field on
Rn.
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Assumption 3.1 (Vector field regularity on Rn). The vector field X is a
measurable map, possibly set-valued at 0, i.e., 0 7→ X(0) ∈ 2Rn

, with X being
a bounded operator on Rn and locally Lipschitz away from 0.

It is known that under the conditions of Assumption 3.1, F [X] is upper
semi-continuous and compact, convex valued, which allows for a smooth con-
verse Lyapunov theory, e.g., see the discussions3 in [CLS98].

Proposition 3.2 (Strong global asymptotic stability and homotopic semiflows
on Rn). Let 0 ∈ Rn, for n 6= 5, be strongly GAS, in the sense of Filippov, under
ẋ ∈ F [X](x), with X satisfying Assumption 3.1. Then,

(i) for any t ≥ 0 we have that the time-t map of the semiflow generated by
F [X], that is, ϕt(·;F [X]), is homotopic to ϕt(·;−∂x), along time-t maps
corresponding to semiflows such that 0 is strongly GAS; and

(ii) in particular, the semiflow ϕ(·;F [X]) is homotopic to ϕ(·;−∂x), along
semiflows that preserve 0 being strongly GAS.

Proof. The proof proceeds in 5 steps. First we show that the time-t map
ϕt(·;F [X]), corresponding to ẋ ∈ F [X](x), can be homotoped along semiflows
to a gradient flow ϕt(·;−∇V ), such that along the homotopy the origin remains
strongly GAS. In Step (ii), by exploiting symmetry we show that a minor
extension of [GSW99], allows for showing that for any γ ∈ K∞ there is a
T ∈ Homeo+(Rn;Rn) (not just T ∈ Homeo(Rn;Rn)) such that V (T−1(x)) =
γ(‖x‖2). In particular, it follows that T is homotopic to idRn along a continuous
path in Homeo+(Rn;Rn). Then, in Step (iii), we use this map T to homotope
ϕt(·;−∇V ) to a semiflow, denoted ϕ̃, that has V ◦T−1 as its Lyapunov function.
Again, 0 remains strongly GAS along the path. Next, we show in Step (iv)
that ϕ̃t can be homotoped to the time-t map ϕt(·;−∂x). At last, we combine
the above and conclude in Step (v).

(i) Since 0 is strongly GAS under ẋ ∈ F [X](x) and X satisfies Assump-
tion 3.1, there is a Lyapunov pair V ∈ C∞(Rn;R≥0) and W ∈ C∞(Rn \
{0};R≥0), that certifies stability of 0 ∈ Rn [CLS98, Thm. 1.3], under any
Filippov solution to (1.2). In particular, we can construct the homotopy
H : [0, 1] × Rn \ {0} → Rn \ {0} through non-vanishing vector fields, de-
fined by (s, x) 7→ H(s, x) := (1 − s)F [X](x) − s∇V (x). Then, as for any

3To add, indeed, the existence of a smooth Lyapunov function for a discontinuous vector
field relates to robustness [GST12] (e.g., interpret Definition 1.1 as stability prevailing under
all perturbations admissible through the inclusion) and of course to the topology of the space
and attractor (e.g., there cannot be a single smooth Lyapunov function on the circle S1 that
asserts some point p? ∈ S1 is GAS under some (discontinuous) vector field X on S1).
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s ∈ [0, 1] we have that (1− s)F [X]− s∇V also satisfies Assumption 3.1, plus

〈∇V (x), H(s, x)〉 ≤ −(1− s)W (x)− s〈∇V (x),∇V (x)〉, ∀x ∈ Rn \ {0},

we find that 0 is strongly GAS, in the sense of Filippov, under ẋ ∈ (1 −
s)F [X](x)−s∇V (x) for any fixed s ∈ [0, 1]. Now, to construct a homotopy on
the level of semiflows, we follow Hartman [Har02, Ch. V, p. 93] and consider
the following extended system ΣH on [0, 1]× Rn:

ΣH :

{
ṡ = 0,

ẋ ∈ (1− s)F [X](x)− s∇V (x).

Observe the following, 0 ∈ Rn is strongly GAS under ẋ ∈ (1 − s)F [X](x) −
s∇V (x) for any fixed s ∈ [0, 1], which we can assert by means of the pair
(V, (1 − s)W + s‖∇V ‖2

2). Therefore, as V has compact sublevel sets [CLS98,
(L2)], any Filippov solution to ΣH is defined for all t ≥ 0, e.g., see [Kha02,
Thm. 3.3] for the standard ODE case. Now since (s, x) 7→ H(s, x) is locally
Lipschitz away from 0, we can appeal to the Picard-Lindelöf theorem [Tes12,
Thm. 2.2] and hence, by strong asymptotic stability [CLS98, Def. 2.1] cf. Ex-
ample 1.3, any solution to ΣH is also unique, which allows us to define the time-
t map (s, x) 7→ ϕt((s, x); ΣH) for any t ≥ 0. In its turn, by considering the path
[0, 1] 3 s 7→ ϕt((s, ·); ΣH), we see that this time-t map ϕt defines a homotopy
from the semiflow under F [X] to the (semi)flow under −∇V . Specifically, we
have that ϕt((0, x); ΣH) = (0, ϕt(x;F [X])), ϕt((1, x); ΣH) = (1, ϕt(x;−∇V ))
and ϕt((s, 0); ΣH) = (s, 0) ∀s ∈ [0, 1]. Now, for any fixed s ∈ [0, 1], overload
notation and define the time-t map ϕt(·; (s,ΣH)) := π2:n+1 ◦ ϕt((s, ·); ΣH), for
π2:n+1 the projection on the last n coordinates. It follows that this map checks
out as a semiflow, since π2:n+1 is continuous and for any x ∈ Rn we have that

(i) ϕ0(x; (s,ΣH)) = x; and

(ii)ϕt2(ϕt1(x; (s,ΣH)); (s,Σ)) = ϕt2+t1(x; (s,ΣH)), ∀t1, t2 ≥ 0.

(ii) Grüne, Wirth and Sontag showed that for our Lyapunov function V
at hand, we can always find a T ∈ Homeo(Rn;Rn), with T (0) = 0, such that
V (T−1(x)) = γ(‖x‖2), for some γ ∈ K∞, smooth on (0,+∞) [GSW99, Prop.
1]. We recall their construction of this map. They define (t, x) 7→ ψ(t, x) to
be the (local) flow with respect to the ODE

ẋ =
∇V (x)

‖∇V (x)‖2
2

.

It follows that, on the domain of ψ, V (ψ(t, x)) = V (x) + t. Now fix some
c > 0, then they define the map πc : Rn \ {0} → V −1(c) by x 7→ πc(x) :=
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ψ(c − V (x), x), that is, starting from x ∈ Rn \ {0} you flow—either back-
ward or forward—along ψ until you hit V −1(c). Then, due to initial work
by Wilson [WJ67], we know that V −1(c) 'h Sn−1, however, now—that is,
after [GSW99] was published, the resolution of the Poincaré conjecture4 im-
plies there must be a homeomorphism S : V −1(c) → Sn−1, for any n ≥ 1.
Next, define the map Q := S ◦ πc : Rn \ {0} → Sn−1 and eventually the map
T : Rn → Rn by

x 7→ T (x) :=

{
γ−1(V (x))Q(x) ∀x ∈ Rn \ {0}
0 otherwise,

Now, it turns out that the particular choice of the homeomorphism S : V −1(c)→
Sn−1 is irrelevant for the construction of T as in [GSW99, Prop. 1]. Hence,
we simply do the following. If T ∈ Homeo+(Rn;Rn), that is, if T pre-
serves orientation, we are done. If not, we can always adjust T , for instance,
we can compose S with a map reflecting a single coordinate, denoted by
ρ : Sn−1 → Sn−1, e.g., (x1, x2, . . . , xn) 7→ (x1, x2, . . . ,−xn), to enforce this
(recall that deg(ρ) = −1 [GP10, Ch. 3]), that is, we use ρ ◦S instead of S. As
T can always be chosen to be orientation-preserving, T (and equivalently T−1)
can assumed to be a stable homeomorphism5 and hence T is (C0) isotopic6 to
idRn , e.g., see [Kir69] and [Moi13, Ch. 11].

(iii) First, we note that, if necessary, we can always pick the homotopy

H̃ : [0, 1] × Rn → Rn from idRn to T−1 such that 0 is always mapped to 0
along the path in Homeo+(Rn;Rn), e.g., for a homeomorphism K : Rn → Rn

such that K(0) 6= 0, consider the map x 7→ L(x) := K(x) − K(0), with
y 7→ L−1(y) = K−1(y +K(0)).

Now, recall that 0 ∈ Rn is (strongly) GAS under ϕt(·;−∇V ), that is,
V (ϕt(x;−∇V ))−V (ϕ0(x;−∇V )) ≤ −

∫ t
0
WV (ϕτ (x;−∇V ))dτ < 0 for all t > 0

and any x 6= 0. Here, WV is such that (V,WV ) is a Lyapunov pair, note that in

this specific case we can select x 7→ WV (x) := ‖∇V (x)‖2
2. Then, since H̃(s, ·)

is a homeomorphism with H̃(s, 0) = 0, we also have for any t > 0 and x 6= 0

4Specifically, Perelman provided the final step (S3) in proving the generalized Poincaré
conjecture in Top. For some historical comments, see [Sti12].

5The stable homeomorphism theorem—stating that all orientation-preserving homeomor-
phisms of Rn are stable—connects to the annulus theorem (which was a longstanding con-
jecture) via the work of Brown and Gluck [BG64] and has a rich history, with the key steps
in the proof being provided by Kirby [Kir69] and Quinn [Qui82]. We point the reader to
the survey of Edwards in the edited book by Gordon and Kirby on 4-manifolds [Edw84].

6Indeed, as also mentioned in [GSW99], T cannot (always) be a diffeomorphism on Rn,
for otherwise we constrain ourselves to topologically conjugate systems.
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that
V (ϕt(H̃(s, x);−∇V ))− V (ϕ0(H̃(s, x);−∇V )) ≤

−
∫ t

0

WV (ϕτ (H̃(s, x);−∇V ))dτ < 0.
(3.1)

Next, define the semiflow ϕ̃(·; s) through the following topological conjugacy

H̃(s, ·) ◦ ϕ̃t(·; s) = ϕt(·;−∇V ) ◦ H̃(s, ·).

Note that ϕ̃t(·; 0) = ϕt(·;−∇V ) whereas ϕ̃t(·; 1) = T ◦ ϕt(·;−∇V ) ◦ T−1.
Also note that continuity of [0, 1] 3 s 7→ ϕ̃t(·; s), in particular, continuity

of [0, 1] 3 s 7→ H̃(s, ·)−1, follows from Homeo+(Rn;Rn) being a topological
group [Are46] (endowed with the compact-open topology), i.e., combine that
the map Homeo+(Rn;Rn) 3 h 7→ h−1 is continuous with path-connectedness
being preserved under a continuous map. Then, it follows from (3.1) that for
any t > 0 and x 6= 0 we have that

V (H̃(s, ϕ̃t(x; s)))− V (H̃(s, ϕ̃0(x; s))) ≤

−
∫ t

0

WV (H̃(s, ϕ̃τ (x; s)))dτ < 0.
(3.2)

Now, using (3.2), define the (parametric in s ∈ [0, 1]) Lyapunov function

Ṽ (·; s) ∈ C0(Rn;R≥0) through x 7→ Ṽ (x; s) := V (H̃(s, x)) and similarly, define

W̃V through x 7→ W̃V (x; s) := WV (H̃(s, x)) Hence, we have that for any s ∈
[0, 1] the following Lyapunov inequality holds: Ṽ (ϕ̃t(x; s); s)− Ṽ (ϕ̃0(x; s); s) ≤
−
∫ t

0
W̃V (ϕ̃τ (x; s); s)dτ < 0, for all t > 0 and any x 6= 0. Note that x 7→

Ṽ (x; 0) = V (x) whereas x 7→ Ṽ (x; 1) = V (T−1(x)) = γ(‖x‖2) =: Vγ(x) and

x 7→ W̃V (x; 1) = WV (T−1(x)). Also, as H̃(s, ·) ∈ Homeo+(Rn;Rn) fixes 0, any
compact neighbourhood K of 0 is mapped to some compact neighbourhood
H̃(s,K) of 0, hence, Ṽ (·; s) will always have the required compact sublevel
sets.

(iv) Although the path from idRn to T−1 is merely through Homeo+(Rn;Rn),
it is known7 that T can always be chosen to be diffeomorphic on Rn \ {0} for
n 6= 5 [GSW99] (note that the composition with ρ does not change this).

7Some comments are in place. Perelman’s resolution came after the paper by Grüne,
Sontag and Wirth, the case n = 4 (S3) is resolved by now. Despite some claims in the
literature, to the best of our knowledge, the case n = 5 is still open. We emphasize that
the existence of these diffeomorphisms is largely due to Smale’s h-cobordism theorem, as
the generalized Poincaré conjecture is known to fail, in general, for Diff (e.g., due to the
existence of exotic spheres [Mil56]).



15

Hence, the vector field corresponding to ϕ̃(·; 1), denoted F̃ , is readily well-
defined on Rn \ {0}, i.e.,

d

dτ
ϕ̃τ (x; 1)

∣∣∣∣
τ=0

= −DT (T−1(x))∇V (T−1(x)) =: F̃ (x), ∀x ∈ Rn \ {0}. (3.3)

In general, F̃ need not be continuous at 0, simply because DT need not be
continuous at 0. However, γ can always be chosen such that T is C1 on Rn

with DT (0) = 0 [GSW99, Prop. 1].
Unfortunately, Vγ is by no means smooth at 0 for any choice of γ. In fact,

the appropriate γ ∈ K∞ from [GSW99, Prop. 1] to guarantee T is sufficiently
regular is of the following form. Let α ∈ K be smooth, define h(r) :=

∫ r
0
a(τ)dτ

and set γ := h−1. It readily follows that γ′(r) = 1/α(γ(r)) is smooth on
(0,+∞), yet, limr→0+ γ

′(r) = +∞, e.g., r 7→ γ(r) = r1/2. However, note that

on Rn \ {0} we have 〈∇Vγ(x), F̃ (x)〉 ≤ −W̃V (x), which is equivalent to〈
γ′(‖x‖2)

x

‖x‖2

, F̃ (x)

〉
≤ −W̃V (x), ∀x ∈ Rn \ {0}. (3.4)

Thus, multiplying (3.4) by the function a ∈ C0(Rn;R≥0), defined through
x 7→ a(x) := ‖x‖2/γ

′(‖x‖2), yields that Vq ∈ C∞(Rn;R≥0) and Wq ∈ C∞(Rn \
{0};R>0), defined by x 7→ Vq(x) := 1

2
‖x‖2

2 and x 7→ Wq(x) := −a(x)W̃V (x),

comprise a Lyapunov pair for F̃ , also recall Example 1.4. Equivalently, one
can observe that the level sets of Vγ are standard spheres.

Then, as in Step (i), we construct a homotopy through non-vanishing vector

fields on Rn \ {0}, in this case from F̃ to −∇Vq = −∂x, with Vq being a

Lyapunov function asserting that 0 is (strongly) GAS under F̃ . Specifically,

construct the map (s, x) 7→ Hq(s, x) := (1 − s)F̃ (x) − s∇Vq(x) (in this case

for all x ∈ Rn). Then, as for any s ∈ [0, 1] we have that (1 − s)F̃ − s∇Vq ∈
C0(Rn;Rn), plus

〈∇Vq(x), Hq(s, x)〉 ≤ −(1− s)Wq(x)− 2sVq(x), ∀x ∈ Rn \ {0},

we find that 0 is (strongly) GAS under ẋ = (1 − s)F̃ (x) − s∇Vq(x) for any
fixed s ∈ [0, 1]. To pass to the level of semiflows we can proceed as in Step

(i), that is, we can show there is homotopy from ϕt(·; F̃ ) to ϕt(·;−∂x) along
semiflows, such that 0 is GAS.

(v) Since we have constructed the desired (i.e., preserving stability) homo-
topy between any time-t map ϕt(·;F [X]) to ϕt(·;−∂x), we just observe that
all these maps are continuous in t so that we can conclude on the existence of
the homotopy from the semiflow ϕ(·;F [X]) to ϕ(·;−∂x).
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Figure 3.1: Example 3.2: on the left, the graph of Vi around x = 0; and on the
right, the graph of Vq around x = 0. In between, two steps of the homotopy that
connects Vi to Vq, through continuous function that preserve x = 0 being the global
minimizer.

Proposition 3.2 is largely about the existence of a homotopy, less about the
construction. Still, we provide some examples below.

Example 3.1 (Homotopic vector fields, preserving stability). It is known
that the following polynomial dynamical system does not admit a polyno-
mial Lyapunov function asserting 0 is GAS [AKP11]. This 2-dimensional dif-
ferential equation is defined by ẋ = X1(x) := (−x1 + x1x2,−x2). A non-
polynomial C∞ Lyapunov function that does assert 0 is GAS is given by
(x1, x2) 7→ V1(x1, x2) := (1/2) log(1 + x2

1) + (1/2)x2
2. To construct a homotopy

from ϕ(·;X1) to ϕ(·;−∂x), first construct the straight-line homotopy from X1

to −∇V1, i.e. (1− s)X1 − s∇V1; stability is asserted throughout by V1. Next,
define V (·; s) := (1 − s)V1 + sVq, for s ∈ [0, 1] and x 7→ Vq(x) := (1/2)‖x‖2

2.
It follows that, for any s ∈ [0, 1], ∇V (x; s) = 0 ⇐⇒ x = 0, such that
[0, 1] 3 s 7→ −∇V (·; s) parametrizes a homotopy from −∇V1 to −∂x, along
vector fields that render 0 GAS, asserted by V (·; s). It is interesting to note
that although X1 does not admit a convex polynomial Lyapunov function,
the negative gradient flow of the Lyapunov function corresponding to X1 does
cf. [JS24]. ◦

Example 3.2 (Homotopy from invexity to convexity). Consider a coercive,
invex function (i.e., every critical point is a global minimizer) on R defined by
x 7→ Vi(x) := (1/2)x2 + (3/2) sin(x)2. In the context of Proposition 3.2, we
can find a map T such that V (T−1(x)) = γ(|x|) :=

√
|x|, and a path from T

to idR, as given by the homotopy

[0, 1]× R 3 (s, x) 7→ Hi(s, x) := sgn(x)

(
1 + s

2
x2 + (1− s)3

2
sin(x)2

)2−(3/2)s

with Hi(0, ·) = T and Hi(1, ·) = idR. In a second step one could consider the
homotopy (s, x) 7→ x(1/2)+(3/2)s. Summarizing, we can construct the path from
Vi to x 7→ Vq(x) := x2, along continuous functions such that 0 is the global
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minimizer throughout8, see Figure 3.1. Evidently, for examples as simple as Vi
one can find simpler homotopies. However, to the best of our knowledge, the
mere existence of such a homotopy is still an open problem, in general.

However, Proposition 3.2 provides us with the existence of a homotopy
from a smooth, proper Lyapunov function V on Rn, asserting 0 ∈ Rn is GAS,
to Rn 3 x 7→ ‖x‖2

2, along continuous9 Lyapunov functions that assert 0 ∈ Rn

is GAS along the homotopy. Differently put, we can find a homotopy from a
coercive, invex function, to a convex function, such that along the homotopy
we preserve the global minimizer. We believe this is of independent interest. ◦

As we allow for a class of discontinuous vector fields, Proposition 3.2 allows
for a slight extension of the standard Hopf index, this has been pioneered by
Gottlieb in earlier work, e.g., see [GS95]. See also [CRT08] for a Conley index
applicable to discontinuous vector fields and see [Kva21] for a hybrid version
of the Poincaré-Hopf theorem.

We point out that one could omit Step (i) of the proof of Proposition 3.2,
yet, as is also evident from Example 3.1, it is typically convenient to pass
through a gradient flow. We exploit precisely this step in the proof of Theo-
rem 3.4 below.

We also remark that the origin plays no particular role in Proposition 3.2,
as it should. In fact, if X is such as in Proposition 3.2, yet, the equilibrium
point is now arbitrary, we can still construct a homotopy between ϕ(·;F [X])
and ϕ(·;−∂x) such that along the homotopy some point is GAS. For instance,
the following family of time-t maps parametrizes a homotopy between the flows
corresponding to the ODEs ẋ = −x and ẋ = −(x− x̄):

(t, x) 7→ ϕt(x; s) = e−tx+ s(In − e−tIn)x̄, s ∈ [0, 1].

Indeed, sx̄ is GAS along the homotopy (e.g., consider the Lyapunov function
x 7→ V (x; s) := 1

2
(x− sx̄)2).

Next, we generalize Proposition 3.2 to smooth manifolds, which is almost
immediate as points being GAS heavily restrict the class of manifolds, e.g.,
see [BS70, Ch. V.3]. To clarify terminology, an n-dimensional manifold Mn is
said to be ψ-diffeomorphic to Rn when ψ(Mn) = Rn for a diffeomorphism ψ.
We will always assume that our manifold is Hausdorff and second countable.
Regarding our vector fields, we assume the following.

Assumption 3.3 (Vector field regularity on Mn). Given a C∞ manifold Mn,
the continuous vector field X on Mn is such that X gives rise to a continuous
(global) flow ϕ(·;X) : R×Mn →Mn.

8For a simulation of this homotopy, see wjongeneel.nl/figinvex.gif.
9It is not evident, and currently unknown, whether smoothness can be preserved through-

out the homotopy, see Step (iii) of the proof of Proposition 3.2.

wjongeneel.nl/figinvex.gif
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Comparing to Proposition 3.2, we note that the vector fields under consid-
eration in Theorem 3.4 (i.e., Assumption 3.3) can be less regular indeed. To
avoid too many technicalities, we refrain from those generalizations, however.

Theorem 3.4 (Stability preserving semiflows). Let Mn be a C∞ manifold, for
n 6= 5, and let p? ∈ Mn be GAS under both the vector fields X and Y , with
both X and Y satisfying Assumption 3.3. Then, the flow ϕ(·;X) is homotopic
to ϕ(·;Y ), along flows that preserve p? being GAS.

Proof. First, since p? is GAS under X, there is V ∈ C∞(Mn;R≥0) such that
X(V ) = LXV < 0 on Mn \ {p?} [FP19]. Now we fix some Riemannian metric
g, which always exists [Lee12, Ch. 13], such that we can define the Riemannian
gradient gradV (omitting the dependence on g). It follows that −gradV (V ) <
0 on Mn \ {p?} such that we can define the straight-line homotopy between X
and −gradV , preserving that p? is GAS.

Due to smoothness and stability, we know that −gradV gives rise to a flow,
denoted ϕ(·;−gradV ), on Mn. In fact, for any t ∈ R, p 7→ ϕt(p;−gradV ) is
a diffeomorphism. This implies in particular that Mn is ψ-diffeomorphic to
Rn [WJ67, Thm. 2.2], for some diffeomorphism ψ : Mn → Rn.

Next, define the diffeomorphism ψ̃ by Mn 3 p 7→ ψ̃(p) := ψ(p) − ψ(p?) ∈
Rn, such that ψ̃(p?) = 0, and consider x := ψ̃(p) such that in these new
coordinates we have

ẋ = −Dψ̃(ψ̃−1(x))gradV (ψ̃−1(x)) =: X(x)

Indeed, the vector field X meets precisely the criteria of Proposition 3.2.
Then, observe that ϕt(·;−gradV ) = ψ̃−1 ◦ ϕt(·;X) ◦ ψ̃, which implies that

ϕt(·;−gradV ) can be homotoped to ψ̃−1 ◦ ϕt(·;−∂x) ◦ ψ̃ such that p? remains
GAS along the homotopy.

We can do the exact same for the vector field Y . Then, since ψ̃ is in-
dependent of the vector fields X and Y we can conclude by the transitivity
property of homotopies, that is, both the time-t maps under X and Y can be
homotoped to ψ̃−1 ◦ ϕt(·;−∂x) ◦ ψ̃.

Example 3.3 (Equilibria on the sphere). Regarding examples of Theorem 3.4
one might think of rendering the South Pole S an attractor on S2 \ {N}. To
that end, consider the vector fields X and Y on R2, defined through

X(x) := (−0.1x1 − x2)∂x1 + (x1 − 0.1x2)∂x2 ,

Y (x) := (−x1 − x1x
2
2)∂x1 + (−x2 + x2

1x2)∂x2 .
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Figure 3.2: Example 3.3: on the left, some flow lines under (Π−1
N )∗X; and on the

right, some flow lines under (Π−1
N )∗Y . In between, two steps of the homotopy that

connects (Π−1
N )∗X to (Π−1

N )∗Y , through vector fields that render S GAS on S2\{N}.

The origin is GAS under both X and Y (e.g., consider the canonical quadratic
Lyapunov function). Let ΠN be the stereographic projection from S2 \ {N} to
R2. Then, to transform X and Y to vector fields on S2 \{N}, we construct the
pushforwards (Π−1

N )∗X and (Π−1
N )∗Y , see Figure 3.2. Exploiting this structure

and our previous work [JS24], we can construct an explicit homotopy between
these two vector fields that preserves stability of S on S2 \ {N}10. ◦

Remark 3.4 (On weaker notions of stability). We note that, in general, one
cannot relax global asymptotic stability to mere stability. A reason being
that the (Hopf) index of corresponding equilibria under those vector fields
is by no means fixed to (−1)n [KZ84, Sec. 52] (for n the dimension of the
state space), that is, since this index is homotopy invariant, if the indices
are different, no homotopy exists between them. This also means that these
equilibria cannot just be homotoped to equilibria that are GAS. Interestingly,
Krasnosel’skĭı and Zabrĕıko considered precisely that question: “We now turn
to the following question: Consider an autonomous system such that zero is
an equilibrium state which is only known to be Ljapunov-stable. Is it always
possible to deform this system into a system such that zero is an asymptotically
stable equilibrium point?” [KZ84, p. 342]. ◦

Next, we briefly comment on the particular class of semiflows we consider.

Remark 3.5 (On flows generated by vector fields). Converse Lyapunov theory
for flows is intimately connected to vector fields, e.g., see [FP19]. For instance,
techniques to smooth a continuous Lyapunov function for a flow naturally
result in a smooth function that allows for asserting stability under the vector
field that generates this flow. Secondly, there are flows—not generated by a
continuous vector field—that fail to admit a smooth Lyapunov function [FP19,
Sec. 7]. This motivated us to work with (semi)flows generated by vector fields.
It is unclear if a generalization exists. Note, we are not talking about maps. ◦

10For a numerical simulation of the homotopy, see wjongeneel.nl/figStereoS2.gif.
Note that the homotopy is through the canonical vector field indeed.

wjongeneel.nl/figStereoS2.gif
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4 A view from optimal transport Let 0 ∈ Rn be GAS under the smooth
ODE ẋ = X(x). As such, we know that there must be a smooth Lyapunov
function V , asserting stability of 0. We can simply construct a straight-line
homotopy from X to −∇V , i.e., [0, 1] 3 s 7→ (1 − s)X − s∇V and preserve
stability throughout (since V remains a valid Lyapunov function). Now it
is tempting to believe that we should be able to homotope x 7→ V (x) into
x 7→ Vq(x) := 1

2
‖x‖2

2 along “Lyapunov functions”, specifically, along invex
functions such that their negative gradient flow is well-defined and renders 0
GAS. By passing to semiflows instead of vector fields, Theorem 3.2 confirms
this belief.

However, to refine our understanding towards a similar result for vector
fields, we note that our desire relates to optimal transport (OT) in the fol-
lowing way. Let µ0, µ1 ∈ P(Rn) be Borel probability measures on Rn. Now
suppose that dµ0 = κ0e

−V dλn and dµ1 = κ1e
−Vqdλn, for κ0, κ1 normalization

constants, λn the Lebesgue measure on Rn and e−V , e−Vq (unnormalized) den-
sities corresponding to our Lyapunov functions. Can we transport µ0 to µ1

along sufficiently regular measures, preserving unimodality?
Suppose the answer is yes, then we can construct a path of densities

[0, 1] 3 s 7→ f(x; s), with f(x; 0) = e−V (x) and f(x; 1) = e−Vq(x). Now, if
f is sufficiently regular, we can conclude that ∇ log f(x; s) is a smooth vector
field, rendering 0 GAS, for each fixed s. Thus, understanding the transporta-
tion of measures can provide further insights. It is particularly interesting that
the standard Gaussian measure results in the canonical ODE ẋ = −x.

In what follows we touch upon this viewpoint and show how OT and our
homotopy questions are indeed intimately related.

The “Monge formulation”, with a quadratic cost on Rn, of OT is as follows,
let µ, ν ∈ P2(Rn) := {µ ∈ P(Rn) :

∫
‖x‖2

2dµ(x) < +∞}, then we would like
to solve

inf
{T :T#µ=ν}

∫
Rn

‖x− T (x)‖2
2dµ(x), (4.1)

where T#µ denotes the pushforward of µ, i.e., T#µ(A) = µ(T−1(A)) for
all Borel sets A ⊆ Rn. Now, Brenier’s seminal work [Bre91], showed that if
µ � λn, then, there is always a convex map φ : Rn → R, being µ-a.e. differ-
entiable, such that ∇φ#µ = ν solves the Monge problem (4.1). In general, φ
is not smooth and regularity of the optimal transport map is typically studied
through the Monge-Ampère equation, e.g., see [Phi13].

To illustrate what can already be said, we do a simple example.

Example 4.1 (Gaussian optimal transport). Suppose we have two zero-mean
Gaussian measures µ0 and µ1 on Rn, with covariance matrices Σ0 and Σ1,
respectively. In this case, the optimal transportation map, in the sense of (4.1),
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is simply x 7→ T (x) := Ax, for A := Σ
−1/2
0 (Σ

1/2
0 Σ1Σ

1/2
0 )1/2Σ

−1/2
0 , that is,

T#µ0 = µ1, e.g., see [PC19, Rem. 2.31]. In fact, we can construct the
interpolation T (·; s) := (1 − s)idRn + sT , with s ∈ [0, 1] and show that for
µ(·; s) := T (·; s)#µ0 we have that

Σ(s) = Σ
−1/2
0

(
(1− s)Σ0 + s(Σ

1/2
0 Σ1Σ

1/2
0 )1/2

)2

Σ
−1/2
0 � 0.

Indeed, Brenier’s map is simply x 7→ φ(x; s) = (1− s)1
2
〈x, x〉+ s〈x,Ax〉. Now

consider the density ρ(·; s) defined through

Rn 3 x 7→ ρ(x; s) =
1√

(2π)ndet(Σ(s))
e−

1
2
〈x,Σ(s)−1x〉

First, note that s 7→ Σ(s)−1 is smooth (as captured by the Lie group structure
of real invertible matrices, e.g., see [DK99]). Then, set V (·; s) := − log ρ(·; s).
Now suppose that Σ1 = In. It follows that the family of ODEs ẋ = −∇V (x; s),
as parametrized by s ∈ [0, 1], comprises a homotopy from ẋ = −∇V (x; 0) to
ẋ = −x, through vector fields such that 0 is GAS (e.g., consider the Lyapunov

function x 7→ Ṽ (x; s) := 1
2
〈x,Σ(s)−1x〉). ◦

Indeed, the result from Example (4.1) is already known in that sense that
for vector fields equipped with convex Lyapunov functions—in particular, lin-
ear vector fields—we can construct a stability-preserving homotopy on the level
of vector fields [JS24]. Note that the fact that we could exploit convexity fits
in precisely with work by Caffarelli, e.g., see [Caf00, Thm. 11].

5 Conclusion and future work We have provided a first step towards ad-
dressing Conley’s converse question in generality far beyond our previous
work [JS24], yet, many open questions remain. Although directly working
with flows has its benefits, e.g., see [ADJ23], the main open problem is evi-
dently the extension to vector fields and generic attractors. Several other open
questions are as follows.
Open question 1: prove or disprove that (2.1) preserves stability throughout
the homotopy.
Open question 2: prove or disprove that Proposition 3.2 holds for n = 5. Note
that a counterexample would disprove the generalized Poincaré conjecture in
Diff for 4-dimensional spheres.

Although we work with semiflows, we rely on vector fields generating them
(see Remark 3.5). Removing this condition is non-trivial, illustrated by [FP19,
Sec. 7], but also not futile, as illustrated by the simple example below.
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Example 5.1 (An attractor on the mapping torus). To construct an example
of a semiflow that does not correspond to a vector field, one can appeal to maps
with a “negative orientation”, e.g., see that a smooth vector field X always
results in a flow ϕ(·;X) such that for any t > 0 the diffeomorphism ϕt(·;X)
is isotopic to the identity, and the identity map has positive orientation11. To
that end, consider the map R 3 x 7→ f(x) := −αx, for some α ∈ (0, 1), and
the define the mapping torus of (R, f) through Mf := {(x, t) ∈ R × R≥0 :
0 ≤ t ≤ 1}/ ∼ for (x, 1) ∼ (f(x), 0). Now, the suspension of f (under the
ceiling function c(x) ≡ 1) is the semiflow ϕ(·; f) defined through ϕt((x, s); f) :=
(fn(x), s′) where the pair (n, s′) satisfies n + s′ = t + s with 0 ≤ s′ ≤ 1, e.g.,
see [BS02, Sec. 1.11]. For our choice of f it follows that the circle {0}×[0, 1]/ ∼
is an attractor under ϕ(·; f) on Mf . ◦

Open question 3: prove or disprove that Proposition 3.2 holds for all semiflows
that render 0 GAS.

We also consider relaxing Assumption 3.1, which is instrumental at the
moment to be able to appeal to a converse, smooth Lyapunov theory. However,
Example 1.4 already showed that the vector field need not be bounded at 0
for a semiflow to exist.
Open question 4: relax Assumption 3.1 as far as possible.

Section 4 just touched upon connections with optimal transport. Motivated
by similar work in the context of geometry processing [SV19] (vector field
interpolation), we believe this direction deserves a further study.
Open question 5: elucidate what optimal transport can tell us about the exis-
tence of stability preserving homotopies on the level of vector fields, plus, what
can we tell optimal transport?

At last we point out that classical results typically tell us that certain maps,
equivalence classes and so forth, exist. These results, however, rarely provide
these objects explicitly. Recent work aims at finding algorithmic schemes to
obtain these objects, may it be approximately, e.g., see [BBK21]. Our work
might also benefit from more explicit results, especially when applied in the
context of optimization.

A Continuation and the Conley index The existence of a homotopy on
Mn is not particularly insightful by itself. More interesting is to consider
classification up to homotopy, e.g., Hopf’s celebrated degree theorem states (in
its simplest form) that all continuous maps from Sm to itself, are completely
classified up to homotopy, via their (topological) degree, e.g., see [Mil65, p.
51].

11Consider the homotopy [0, 1] 3 s 7→ ϕτ(1−s) from ϕτ to ϕ0 = id.
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The question that we try to address is motivated by better understanding
to what extent Hopf’s theorem extends to qualitatively equivalent classes of
dynamical systems.

The most fruitful framework in this regard is Conley’s theory [Con78]. It
is outside the scope of this note to cover these ideas, but we briefly highlight
it to elucidate the central question of this work.

In the context of semiflows, Conley’s index theory can be set up as fol-
lows [Ryb87, Ch. 1]. Given a semiflow ϕ on Mn, then, S ⊆ Mn is said to be
an isolated (positively) invariant set when there is a compact set K ⊆ Mn,
called an isolating neighbourhood, such that

S = I(K,ϕ) := {p ∈ K : ϕt(p) ∈ K ∀t ≥ 0} ⊆ int(K).

Now, a pair of compact sets (N,L) ⊂Mn×Mn is said to be an index pair for
S when

(I.i) S = I(cl(N \ L), ϕ) and N \ L is a neighbourhood of S;

(I.ii) L is positively invariant in N ; and

(I.iii) L is an exit set for N .

Then, the (homotopy) Conley index of S is the homotopy type of the pointed
(quotient) space (N/L, [L]). Importantly, the Conley index is independent of
the choice of index pair. Towards a computational theory, one usually works
with the homological definition instead.

Now, if some N can be chosen to be an isolating neighbourhood throughout
a homotopy [0, 1] 3 s 7→ ϕ(·; s), then, the Conley index is preserved along
that homotopy and we speak of a continuation (of the Conley index). The
existence of the homotopy implies continuation, but to what extent does an
equivalent Conley index imply the existence of an index preserving homotopy?
This is precisely the starting point of this note and this is why we speak of a
“converse question”.

Bibliography

[ABB97] V. Andriano, A. Bacciotti, and G. Beccari. “Global stability and external stabil-
ity of dynamical systems”. Nonlinear Anal.-Theor. 28.7 (1997), pp. 1167–1185.
doi: 10.1016/S0362-546X(97)82867-2.

[ADJ23] M. Aguiar, A. Das, and K. H. Johansson. “Universal approximation of flows
of control systems by recurrent neural networks”. Proc. IEEE CDC. 2023,
pp. 2320–2327. doi: 10.1109/CDC49753.2023.10383457.

[AKP11] A. A. Ahmadi, M. Krstic, and P. A. Parrilo. “A globally asymptotically stable
polynomial vector field with no polynomial Lyapunov function”. Proc. IEEE
CDC. 2011, pp. 7579–7580. doi: 10.1109/CDC.2011.6161499.

https://doi.org/10.1016/S0362-546X(97)82867-2
https://doi.org/10.1109/CDC49753.2023.10383457
https://doi.org/10.1109/CDC.2011.6161499


24

[Are46] R. Arens. “Topologies for homeomorphism groups”. Am. J. Math. 68.4 (1946),
pp. 593–610. doi: 10.2307/2371787.

[Asi75] D. Asimov. “Homotopy of non-singular vector fields to structurally stable ones”.
Ann. Math. 102.1 (1975), pp. 55–65. doi: 10.2307/1970973.

[BBK21] J. J. Bramburger, S. L. Brunton, and J. N. Kutz. “Deep learning of conjugate
mappings”. Physica D: Nonlinear Phenomena 427 (2021), p. 133008. doi: 10.
1016/j.physd.2021.133008.

[Ber+17] F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause. “Safe model-
based reinforcement learning with stability guarantees”. Proc. NIPS. 2017,
pp. 908–919.

[BG64] M. Brown and H. Gluck. “Stable Structures on Manifolds: I, II and III”. Ann.
Math. 79.1 (1964), pp. 1–58. doi: 10.2307/1970481,10.2307/1970482,10.
2307/1970483.
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