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Abstract

This note presents a numerical study of the reverse I-projection as recently proposed to
enforce stability in the context of linear system identification. Using classical symplectic
machinery we derive a competitive numerical algorithm to compute this projection.
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1 Introduction

“While the basic theory is established, research concerning the design and analysis of algorithms for
solving Riccati equations is still very active and intense, due to the strong demand from a growing
number of applications.” —Bini, Iannazzo, and Meini [BIM11].
In this note we consider a computational problem arising in linear system identification. In particu-
lar, in [JSK23] the authors address the following problem. Let us be given a stochastic discrete-time
linear time-invariant system of the form

xt+1 = θxt + wt, x0 ∼ ν, (1.1)

where xt ∈ Rn and wt ∈ Rn denote the state and noise at time t ∈ N, respectively. In addition, θ
represents a fixed yet unknown system matrix, and ν stands for the marginal distribution of the
initial state x0. Moreover, assume that θ is asymptotically stable , i.e., θ ∈ Θ = {θ ∈ Rn×n :
ρ(θ) < 1}, where ρ(θ) is the spectral radius.

Now, the goal is to identify θ from a single-trajectory of data {x̂t}Tt=0 generated by (1.1). The
most common method is to use the least squares estimator

θ̂T =
(∑T

t=1 x̂tx̂
T
t−1

)(∑T
t=1 x̂t−1x̂

T
t−1

)−1

. (1.2)

Although θ is asymptotically stable, θ̂T is not necessarily an element of Θ, e.g., due to noise
or insufficient data. This potential qualitative mismatch is unfortunate from a practical point
of view [VODM96, pp. 53-60, 125–129] and theoretically non-trivial to handle due to Θ being
non-convex in general.

Overcoming this hurdle led to a large body of work on the statistics of θ̂T , projecting θ̂T onto
Θ, the representation of stable matrices and more, e.g., see [Mac95; LB02; LB03; BGS08; Van+00;
Van+01; Tur+13; ONV13; Ume+18; Sim+18; GKS19; JP19; SR19; JP20; SRD20; NP20; CGS20].
However, none of these works provides a principled and tractable method to obtain an estimator of
θ that is guaranteed to be asymptotically stable, with statistical guarantees. We refer the reader
to [JSK23] for more comments on related work.
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Contribution To address the aforementioned gap in the literature, Jongeneel, Sutter, and Kuhn
[JSK23] propose a projection method inspired by the theory of large deviations. Their method
comes with statistical guarantees, corresponds to solving a single Linear Quadratic Regulator
(LQR) problem and yields an estimator guaranteed to be stable. Although no numerical problems
are reported, at first sight, the LQR problem at hand seems ill-conditioned. In this note we
elaborate on this particular LQR problem and clarify how the structure of the underlying LQR
problem in [JSK23] is — and can be further — exploited. It turns out that by employing machinery
due to, Moler and Stewart [MS73], Pappas, Laub, and Sandell [PLS80] and Mehl et al. [Meh+09]
this structural observation allows for a fast and numerically stable reformulation of their projection.

Structure We start by introducing the reverse I-projection proposed in [JSK23]. Then, we high-
light the relation between Riccati equations and a particular generalized eigenvalue problem. The
next sections further exploit the closely-related symplectic structure and show how to reformulate
the LQR problem in a numerically well-conditioned manner. The note is concluded with comments
on the implementation and a variety of numerical experiments.

Notation Given a real matrix A ∈ Rn×m, AT denotes its transpose, whereas for a complex
matrix Z ∈ Cn×m, ZH denotes its conjugate (Hermitian) transpose. The real matrix inner product
tr(ATB) is denoted by ⟨A,B⟩, the operator norm and spectral radius of matrix A are denoted by
∥A∥2 and ρ(A), respectively. The additive group of n-dimensional symmetric matrices is denoted
by Sym(n) and the cone of n-dimensional symmetric positive definite matrices is denoted by Sn≻0.
The dimension of 0 is either explicitly indicated, i.e., 0m×n ∈ Rm×n, irrelevant, or implied by the
context. Given a matrix A ∈ Cn×n with simple eigenvalue λ ∈ spec(A), left- and right eigenvectors
will be normalized and are denoted by wH and v, respectively, i.e., wHA = λwH, Av = λv. All
random objects are defined on a measurable space (Ω,F) equipped with a probability measure Pθ

parametric in (the fixed) θ. Similarly, the expectation operator with respect to Pθ is denoted by
Eθ[·]. We will use h.o.t. as an acronym for higher order terms.

2 The reverse I-projection

In this section we largely follow [JSK23]. In particular, besides θ ∈ Θ, we assume the following
throughout.

Assumption 2.1 (Disturbance statistics [JSK23, Assumption II.1]). The disturbances {wt}t∈N
are independent and identically distributed (i.i.d.) and independent of x0 under Pθ. The marginal
noise distributions are unbiased (Eθ[wt] = 0), non-degenerate (Sw = Eθ[wtw

T
t ] ≻ 0 is finite) and

have an everywhere positive probability density function.

To abstract time away, let Θ′ = Rn×n be the space of realizations of θ̂T . Then, inspired by the
nearest stable matrix problem

ΠΘ(θ
′) ∈ arg min

θ∈clΘ
∥θ′ − θ∥22, (2.1)

and the theory of large deviations [Hol08; DZ09], consider the so-called “rate function” I : Θ′×Θ→
[0,∞]

I(θ′, θ) = 1
2 tr
(
S−1
w (θ′ − θ)Sθ(θ

′ − θ)T
)

(2.2)

and correspondingly the reverse I-projection

P(θ′) ∈ argmin
θ∈Θ

I(θ′, θ), (2.3)



2.1 Computing the reverse I-projection 3

for some θ′ ∈ Θ′. Let dlqr(A,B,Q,R) denote any1 standard infinite-horizon discrete-time LQR
routine that outputs the optimal — with respect to the cost matrices Q and R — feedback gain K
such that ρ(A + BK) < 1, cf. [Ber05; Ber07]. It turns out that (2.3) has the following attractive
properties.

Theorem 2.2 (The reverse I-projection [JSK23, Theorem II.3]). Suppose that Assumption 2.1

holds, that the noise is light-tailed as well as stationary and that θ̂T is the least squares estima-
tor (1.2). Then, for any θ ∈ Θ the reverse I-projection defined in (2.3) displays the following
properties.

(i) Asymptotic consistency.

lim
T→∞

P(θ̂T ) = θ Pθ-a.s.

(ii) Finite sample guarantee. There are constants τ ≥ 0 and ρ ∈ (0, 1) that depend only on θ
such that

Pθ

(
∥θ − P(θ̂T )∥2 ≤ κ(Sw)

2εn
1
2 τ√

1− ρ2

)
≥ 1− β

for all β, ε ∈ (0, 1) and T ≥ κ(Sw)Õ(n)log(1/β)/ε2.

(iii) Efficient computation. For any θ′ /∈ Θ and Sw, Q ≻ 0 there is a p ≥ 1, such that for all
δ > 0 we have that

θ⋆δ = θ′ + dlqr(θ′, In, Q, (2δSw)
−1)

is stable and satisfies ∥P(θ′)− θ⋆δ∥2 ≤ O(δp).

2.1 Computing the reverse I-projection The LQR-based computation (approximately) of P(θ′)
as proposed by Theorem 2.2, i.e. θ⋆δ , is algebraically characterized by the symmetric positive
definite solution Pδ to the algebraic Riccati equation

Pδ = Q+ θ′
T
Pδ (In + 2δSwPδ)

−1
θ′. (2.4)

A solution Pδ to (2.4) immediately translates to θ⋆δ = (In + 2δSwPδ)
−1θ′. Clearly, one cannot

simply set δ = 0 when θ′ /∈ Θ. See [LR95] for a complete account on algebraic Riccati equations,
see also [BLW91] for more intimately related topics.

We like to point out that in [JSK23] Q ≻ 0 is considered such that usual observability conditions
trivially hold, cf. [Ber05, Chapter 4]. Besides well-known relaxtions to Q ⪰ 0 based on detectability
arguments we highlight one more situation. When θ′ has no unimodular eigenvalues, Q = 0n×n

suffices to find a stabilizing solution of the corresponding Riccati equation, however, only when
θ′ ∈ Θ, then, this solution is stabilizing and still relates to a LQR problem. The observation
underlying these statements is that for Q = 0n×n the algebraic Riccati equation can have multiple
solutions, Pδ = 0n×n being one of them.

Equation (2.4) provides an algebraic perspective, but in the end, the problem under consider-
ation is the computation of

θ⋆δ = θ′ + dlqr(θ′, In, Q, (2δSw)
−1) (2.5)

for some Q ≻ 0 and some sufficiently small δ > 0. Both of these parameters are up to the user,
for example, in [JSK23] Q = In and δ = 10−9 are used successfully. In what follows, as is done
below and throughout, to aid the reader, certain potential choices of Q are highlighted by means
of a bullet • (· · · ).

1For example, consider the MATLAB function https://ch.mathworks.com/help/control/ref/dlqr.html, or
the (a) Julia Riccati solver https://github.com/andreasvarga/MatrixEquations.jl/blob/master/src/riccati.jl
that functions as the backend of the Julia dlqr(·) method. Note, we do not consider cross-terms in the cost.

https://ch.mathworks.com/help/control/ref/dlqr.html
https://github.com/andreasvarga/MatrixEquations.jl/blob/master/src/riccati.jl
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• (Näıve): Q = In.

To see why Q is an important parameter, assume for a moment that 2Sw = In, let Q be of the
form δQ for some δ > 0 and let Pδ solve the corresponding Riccati equation (2.4). Now see the
following

Pδ = δQ+ θ′
T
Pδ (In + δPδ)

−1
θ′ ⇐⇒ 1

δPδ = Q+ 1
δ θ

′TPδ

(
In + δ2 1

δPδ

)−1
θ′. (2.6)

The construction from above shows that scaling Q by δ is equivalent to the original problem under
δ2 instead of δ, i.e., we see that

dlqr(θ′, In, δQ, δ−1In) = dlqr(θ′, In, Q, δ−2In).

Evidently, the former formulation is numerically preferred and motivates some form of scaling

• (Re-scaling): Q← δdQ, d ∈ N≥1.

Evidently, terms of the form O(δ−1) for arbitrarily small δ > 0 are numerically challenging. As we
highlight below, most of the standard dlqr(·) routines can in fact handle this situation satisfactory.
Perhaps more interesting, as “sufficiently small” is not well-defined, one might want to input a
monotonically decreasing sequence {δk}k and terminate when some appropriate stopping condition
is satisfied. To that end, the selection of Q, perhaps as a function of δ, is ought to play a role, i.e.,
to make sure the computation is numerically stable.

Computational contribution (informal). Using a classical symplectic perspective, the depen-
dency on δ−1, e.g., see (2.5), can be reformulated to a problem where δ appears linearly instead.
Employing such a framework, this note provides a simple iterative QZ routine — almost as simple
as the standard dlqr(·) routine — to solve for θ⋆δ ≈ argminθ∈Θ I(θ′, θ) in a fast and numerically
stable way. To do so, the symplectic perspective is notably employed towards selecting Q ∈ Q,
from some appropriate function class Q, that aids the numerical computation. We theoretically
motivate why Q(δ) = 2δθ′TSwθ

′ is appropriate and corroborate this with numerical experiments.
In [JSK23], some computational details are hidden in the proof of [JSK23, Proposition III.6].

This relates to the special case of θ′ ∈ ∂Θ, but more generally to θ′ having unimodular eigenvalues.
In that case some nice properties of I(θ′, θ) deteriorate, in particular, the computation is necessarily
an approximation. The next example highlights this and illustrates how δ might appear.

Example 2.3 (Closed-form solutions). To shed some more light on the computation, consider the
scalar problem of evaluating dlqr(1, 1, 1, δ−1) for some δ > 0. The corresponding Riccati equa-
tion (2.4) becomes δp2 − δp− 1 = 0. The positive solution is given by pδ = (δ +

√
δ(δ + 4))/(2δ).

Then, as θ⋆δ = (1 + δpδ)
−1θ′ we obtain

θ⋆δ =
1

1 + δ/2 +
√
δ(δ + 4)/2

.

Hence, we observe stability and the preservation of the orientation, i.e., sgn det(θ⋆δ ) = sgn det(θ′),
as given by [JK21; JSK23]. However, we also see that limδ↓0 θ

⋆
δ ∈ ∂Θ. The reason being that

I(1, θ) = 1
2 (1 − θ)2/(1 − θ2) does not blow-up for θ ↑ 1 cf [JSK23, Proposition III.6.3)]. Now we

compute dlqr(1, 1, q, δ−1) for some δ > 0 and q > 0 and get θ⋆δ = 1/(1 + δq/2 +
√

δ(δq + 4)/2).

Hence, for arbitrarily small q > 0 one has θ⋆δ = O(1/(1 +
√
δ)). Recall that the machine precision

µ > 0 is defined as the smallest rational number such that 1 + µ > 1 on that particular machine.
Hence, we must have δ > µ2 to assert asymptotic stability of θ⋆δ , numerically. At last, let q = 0
and |θ′| ≠ 1. Now we find that the stabilizing solution to (2.4) becomes

pδ =

{
0 if θ′2 < 1

(θ′2 − 1)/δ if θ′2 > 1
,
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i.e., pδ = 0 does not result in stabilization of θ′ with θ′2 > 1. Summarizing, for θ′2 < 1 one
has limδ↓0 θ

⋆
δ = θ′, as it should be, and for θ′2 > 1 one has limδ↓0 θ

⋆
δ = 1/θ′, which displays the

symmetry as envisioned in [JSK23, Figure 2].

3 A generalized eigenvalue problem

Example 2.3 hints at the non-trivial dependency of θ⋆δ on δ and in particular that a closed-form
solution becomes quickly prohibitive.

Pappas, Laub, and Sandell [PLS80] show that any solution to an (discrete-time) algebraic
Riccati equation like (2.4) can be represented directly via a solution to a generalized eigenvalue
problem. This allows for some additional algebraic insights beyond dynamic programming formula-
tions and eventually for an efficient and stable algorithm. To keep the work remotely self-contained
we briefly show how a generalized eigenvalue problem arises.

To start, define the pair of matrices S1, S2 ∈ R2n×2n by

S = {S1, S2} =
{(

θ′ 0n×n

−Q In

)
,

(
In 2δSw

0n×n θ
′T

)}
. (3.1)

If useful, the dependency on δ is made explicit, e.g., S2(δ). Then, the generalized eigenvalues
of the matrix pencil S1 − λS2 are defined as the set spec(S1, S2) = {λ ∈ C : det(S1 − λS2) = 0},
generalizing the notation spec(A) for the spectrum of a matrix A2. Now, consider the generalized
eigenvalue problem

S1x = λS2x, (3.2)

for x ∈ C2n a generalized eigenvector with corresponding eigenvalue λ ∈ C. By looking at the
pencil

S1 − λS2 =

(
θ′ − λIn −2δλSw

−Q In − λθ
′T

)
,

we see that λ = 0 is a solution to (3.2) if and only if 0 ∈ spec(θ′). Moreover, it can be shown, e.g.,
see [PLS80, Theorem 4], that the generalized eigenvalues satisfying (3.2) come in reciprocal pairs.
As the next lemma will show, the motivation for the study of (3.2) follows from the fact that a
subset of these generalized eigenvectors can be directly mapped to Pδ satisfying (2.4).

Towards this construction, we will write a solution to (3.2) using a formulation reminiscent of
the standard Jordan Normal form, specifically, define Xs, Xu ∈ C2n×n, Xij ∈ Cn×n for i, j = 1, 2
and Js, Ju ∈ Cn×n by S1X = S2XJ , that is(

θ′ 0n×n

−Q In

)(
X11 X12

X21 X22

)
=

(
In 2δSw

0n×n θ′T

)(
X11 X12

X21 X22

)(
Js 0n×n

0n×n Ju

)
(3.3)

for Xs = [XH
11 XH

21]
H, Xu = [XH

12 XH
22]

H. If there is no λ solving (3.2), with |λ| = 1, we know
that since the eigenvalues come in reciprocal pairs, there is one strictly (asymptotically) sta-
ble n-dimensional eigenspace im(Xs) and one strictly unstable n-dimensional eigenspace im(Xu).
Throughout, we will reserve the block Js to denote the Jordan Normal form corresponding to the
stable eigenspace X s = im(Xs) ⊆ C2n. Now we can highlight a link between (2.4) and a solution
to (3.2).

Lemma 3.1 (Structure of solutions to (2.4) [PLS80, Lemma 1]).

(i) All solutions of (2.4) are of the form XaX
−1
b , where [XH

a XH
b ]

H ∈ C2n×n compromises a set
of n generalized eigenvectors corresponding to (3.2).

2It is also common to consider instead of λ a pair (α, β) such that det(βS1 −αS2) = 0 and map it back to λ via
α/β. This is employed in algorithms.
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(ii) Let Pδ be a solution to (2.4) and let X ∈ C2n×2n be the set of generalized eigenvectors
corresponding to (3.2), where Xs = [XH

11 XH
21]

H ∈ C2n×n denotes a basis for the stable
eigenspace. Then, Pδ = X21X

−1
11 and θ⋆δ = X11J

sX−1
11 ∈ Θ.

From now on, when we talk about the pair (X11, X21), this is in the sense of (3.3) and
Lemma 3.1. At first, Lemma 3.1 does not seem to bring a lot of new information to the ta-
ble. However, we will see in the upcoming sections that the representation Pδ = X21X

−1
11 , and the

matrix pencil formulation in general, allows for numerical and analytical insights beyond what we
could get using a common dynamic programming formulation.

3.1 Numerical stability Given the results from Lemma 3.1, one might consider computing Pδ using
a generalized eigenvalue solver. However, since the computation of eigenvectors is numerically
unstable (see Example 5.1 below), this approach is not preferred. In fact, constructing the Jordan
normal form is not a continuous matrix decomposition. Towards a more stable algorithm we
should consider a unitary basis. Again, to be somewhat self-contained we discuss the merits via
an example.

Example 3.2 (A numerically stable basis [GL13, p. 354]). Consider for some 0 < ε ≪ 1 the
matrix

A =

(
1 + ε 1
0 1− ε

)
. (3.4)

We can diagonalize A and obtain A = TΛT−1 for Λ = diag(1 + ε, 1− ε) and

T =

(
1 1
−2ε 0

)
, κ2(T ) =

1 + 2ε2 + (ε2 + 1)1/2

1 + 2ε2 − (ε2 + 1)1/2
.

Then from [GL13, p. 100] we know that a floating-point computation (finite arithmetic), denoted
fl(·), of a similarity transformation yields fl(T−1AT ) = T−1AT +E with ∥E∥2 ≲ µκ2(T )∥A∥2, for
µ being (proportional to) machine precision. Indeed, for ε → 0 the error bound deteriorates since
the condition number κ2(T ) explodes. If instead of T ∈ GL(n,R) we could use a Q ∈ O(n,R), then,
we minimize ∥E∥2 since κ2(Z) ≥ 1 ∀Z ∈ Rn×n while κ2(Q) = 1 ∀Q ∈ O(n,R).

Fortunately, one can always find a unitary basis, to be self-contained we sketch a proof.

Lemma 3.3 (Real Schur decomposition [GL13, Theorem 7.4.1]). For any A ∈ Rn×n, there exists
a Q ∈ O(n,R) such that

QTAQ = R =


R11 R12 · · · R1m

0 R22 · · · R2m

...
...

. . .
...

0 0 · · · Rmm

 (3.5)

where all Rii blocks are either scalars containing the eigenvalues of A or 2× 2 matrices containing
complex conjugate eigenvalue pairs of A.

Proof (sketch). Let A have some eigenvalue λ ∈ spec(A) with eigenspace Eλ ⊆ Rn. As the matrix
A acts linearly on Rn, we can construct the direct sum Rn = Eλ⊕E⊥

λ and find some orthonormal
basis matrices Q1 and Q2 for Eλ and E⊥

λ , respectively. By construction we have

(
Q1 Q2

)T
A
(
Q1 Q2

)
=

(
Jλ QT

1AQ2

0 QT
2AQ2

)
,

where Jλ is a Jordan block of appropriate size. Now repeat the procedure and decompose QT
2AQ2.

See that the Schur decomposition is not unique when dim(Eλ) > 1 for some λ ∈ spec(A).
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Note, due to possible 2 × 2 blocks on the diagonal R could fail to be upper triangular in the
general sense. As such, R ∈ Rn×n in (3.5) is called upper quasi -triangular.

Example 3.4 (Example 3.2 continued). The matrix A in (3.6) is already in the real Schur form,
however, now consider

A =

(
1 + ε 1
ε 1− ε

)
, (3.6)

one can show that the corresponding matrix R is given by

R =

(
1 + (ε(ε+ 1))1/2 1− ε

0 1− (ε(ε+ 1))1/2

)
. (3.7)

Next, Lemma 3.3 is extended to the generalized eigenvalue setting.

Lemma 3.5 (Generalized real Schur decomposition [GL13, Theorem 7.7.2]). For any A,B ∈ Rn×n

there exist Q,Z ∈ O(n,R) such that QTAZ is upper quasi-triangular and QTBZ is upper triangular.

The reason of interest in Lemma 3.5 is that the generalized spectra spec(A,B) and spec(QTAZ,QTBZ)
are equal, cf. (3.2).

Now, classically, we could write down a solution to a generalized eigenvalue problem using the
Jordan Normal form as in Lemma 3.1, e.g., AX = BXJ . The following celebrated result, as
initiated by [Lau79], tells us that we can also use the Schur decomposition, which as highlighted
before, has superior numerical properties.

Lemma 3.6 ([PLS80, Theorem 8a]). Consider for the pair (S1, S2) as given by (3.1) its generalized
real Schur decomposition as proposed in Lemma 3.5, i.e., there are matrices Q,Z ∈ O(2n,R) such
that QTS1Z is upper quasi-triangular and QTS2Z is upper triangular. Then, all solutions of (2.4)
are of the form P = U21U

−1
11 , for U being defined as

U =

(
U11

U21

)
= Z

(
In

0n×n

)
=

(
Z11

Z21

)
. (3.8)

We refer to Lemma 3.6 as the QZ method , or QZ algorithm (to compute Pδ). The original
QZ algorithm, that is, to compute the generalized real Schur decomposition is due to Moler and
Stewart [MS73]. To provide intuition, a sketch of the proof of Lemma 3.6 is given below.

Proof (sketch). Since λ(A,B) and λ(QTAZ,QTBZ) are equal, we can instead of S1X
s = S2X

sJs

look at S1U = S2UR, with R ∈ Rn×n being stable and upper quasi-triangular3 and U ∈ R2n×n

being defined by (3.8). See [PLS80, p. 637] for more on the construction. Then, from Lemma 3.1
we know that P is of the form X21X

−1
11 . Since R is stable, construct its Jordan Normal form, that

is R = TJT−1. From there we obtain S1UT = S2UTJ . Indeed, after an application of Lemma 3.1
we get that P = U21T (U11T )

−1 = U21U
−1
11 . Using this observation we can extend Lemma 3.1 to

any type of basis, e.g., see early remarks in [Fat69; Wil71].

From the proof of Lemma 3.6 we also see that θ⋆δ = (U11T )J(U11T )
−1 = U11RU−1

11 . So, if
desired, one could skip the computation of Pδ. To elaborate on the possibility of using any basis
related to the stable eigenspace X , see that for any invertible matrix T we have

S1

(
Xs Xu

)(T 0
0 In

)
= S2

(
Xs Xu

)(T 0
0 In

)(
T 0
0 In

)−1(
Js 0
0 Ju

)(
T 0
0 In

)
such that if the basis Xs for X s follows the transformation XsT , we still have

(X21T )(X11T )
−1 = X21X

−1
11 =Pδ,

(X11T )(T
−1JsT )(X11T )

−1 = X11J
sX−1

11 =θ⋆δ .
(3.9)

3Here one exploits group properties of upper-triangular matrices.



8 4 The symplectic group

Note, (3.9) also displays a potential numerical complication not immediately resolved by the QZ
method; one needs still solve a linear system.

4 The symplectic group

Although, practically, we want a method capable of computing θ⋆δ for any θ′ ∈ Θ′, we will see
that the analysis of the pair (θ⋆δ , Pδ) simplifies once we move to a slightly less general setting.
Specifically, assume for the moment that θ′ ∈ GL(n,R) = {θ ∈ Rn×n : det(θ) ̸= 0}. Note, as θ′

corresponds to a realization of the least squares estimator θ̂T and GL(n,R) is dense in Rn×n, such
an assumption is not overly restrictive. Moreover, the Q matrices we derive using this analysis can
be implemented without θ′ being invertible.

Next, define Ω ∈ R2n×2n by4

Ω =

(
0n×n −In
In 0n×n

)
.

Here, Ω defines an anti-symmetric billinear form ω : C2n × C2n → C via ω(x, y) = ⟨x,Ωy⟩, e.g.,
ω(x, x) = 0. Then, define the real symplectic group by

Sp(2n,R) = {M ∈ R2n×2n : MTΩM = Ω}.

The corresponding Lie algebra is given by sp(2n,R) = {X ∈ R2n×2n : XTΩ + ΩX = 0}, with the
standard matrix (commutator) bracket, i.e. [A,B] = AB−BA for appropriately sized matrices A
and B. Elements X of sp(2n,R) satisfy ΩX ∈ Sym(2n) and are called Hamiltonian matrices.
A useful property of the symplectic and Hamiltonian matrices is that for any M ∈ Sp(2n,R) and
X ∈ sp(2n,R) we have that M−1XM ∈ sp(2n,R). When M ∈ Sp(2n,R) we speak of M being
Ω-symplectic. Moreover, we speak of a subspace Y being M -invariant, when MY ⊆ Y. Now, since
θ′ ∈ GL(n,R) it follows from (3.1) that S2 ∈ GL(2n,R) such that S−1

2 S1 is well-defined and in fact
S−1
2 S1 ∈ Sp(2n,R). Specifically, we can define the curve M : R→ Sp(2n,R) by

δ 7→M(δ) = S−1
2 S1 =

(
θ′ + 2δSwθ

′−TQ −2δSwθ
′−T

−θ′−TQ θ′−T

)
. (4.1)

Using this notation, see that for δ1, δ2 ∈ R we have by the group properties of Sp(2n,R) that

MT(δ2)M
T(δ1)ΩM(δ1)M(δ2) = MT(δ2)ΩM(δ2) = Ω.

At times we will write Mδ instead of M(δ) to simplify notation. Similarly, when δ is a curve itself,
δ(t) might be written as δt. One could interpret δ as if it is a structure-preserving perturbation.
Differently put, we call (S1, S2) a symplectic pair (or symplectic pencil), i.e., S1ΩS

T
1 = S2ΩS

T
2 .

To continue, inspired by the Schur complement, M(δ) can be decomposed as follows:

M(δ) =

(
In −2δSw

0n×n In

)(
θ′ 0n×n

0n×n θ′−T

)(
In 0n×n

−Q In

)
, (4.2)

e.g., see also [Meh88, Proposition 2.36]. Indeed, whilst repressing notational dependence on δ, then
from (4.2) we immediately see that θ′ ∈ GL(n,R) =⇒ det(M) = 1. The fact that the eigenvalues
of M come in reciprocal pairs can be seen from ΩMΩ−1 = M−T. Moreover, when Q = 2δSw

see that (4.2) depicts a symplectic similarity transformation, denoted M(δ) = T (δ)TD(θ)T (δ),
T (δ), D(θ) ∈ Sp(2n,R). This observation hints at a seemingly natural choice of Q.

• (Symplectic symmetry): Q = 2δSw.

4Instead of Ω one frequently uses the notation J for the symplectic matrix. However, we use J already to denote
Jordan blocks.
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It is imperative to remark that symplectic matrices are inherently hard to handle numerically. Rea-
sons being, either one likes to have some eigenvalues on the unit disk D1, e.g., in mechanics [Arn10,
Chapter 8], or by reciprocity of its eigenvalues, M is likely to have unstable eigenvalues, even eigen-
values “at infinity”. As highlighted in the previous section, we are only concerned with a stable
subspace and by construction unimodular eigenvalues are ruled out, this eliminates some of the
aforementioned numerical problems.

Ideally, one understands how the selection (perturbation) of the pair (δ,Q) influences the spec-
trum of M . Although work in that direction exists [MBO97; SM16; SMM20], explicit dependencies
are non-trivial and to that end we consider a different line of attack in the upcoming sections.

5 Ω-Lagrangian subspaces

We know from Lemma 3.6 that any basis for X s = im(Xs) will do to construct the pair (θ⋆δ , Pδ). It
is of great interest to understand how this subspace X s ⊆ C2n will change as we perturb δ, i.e., how
we will evolve over a Grassmannian manifold. As promoted in the previous section, understanding
the effect of δ aids in appropriately selecting Q as a function of δ. Unfortunately, perturbation
theory with respect to the standard eigenvector basis is limited cf. [Lax07, Theorem 8, p. 130],
[Kat95, Chapter 2]).

Example 5.1 (Discontinuous eigenvector basis). Consider the real 2× 2 matrix

A =

(
α 1
0 β

)
for some α, β ∈ R. Now see that the corresponding Jordan decomposition is discontinuous (and
ill-conditioned) in the pair (α, β):

A =



(
1 1

0 β − α

)(
α 0

0 β

)(
1 (α− β)−1

0 (β − α)−1

)
α ̸= β(

1 0

0 1

)(
α 1

0 β

)(
1 0

0 1

)
α = β

.

From Example 5.1 it appears that even selecting Q to be simply linear in δ is not necessarily
numerically stable. However, Example 5.1 is concerned with general matrices, it turns out that
the situation improves when we focus on symplectic matrices.

To overcome the difficulties with studying eigenvectors we will use tools which were initially
brought to life within the realms of classical mechanics, e.g., see [AM08, Section 5.3]. In particular,
we use the results due to Mehl et al. [Meh+09].

A subspace W ⊂ C2n is called Ω-Lagrangian when dim(W ) = n and ω(x, y) = 0 ∀x, y ∈ W
[LR95, p. 274]. Equivalently, a subspace W ⊆ C2n is Ω-Lagrangian when for the orthogonal
complement of W with respect to ω, that is W⊥ = {x ∈ C2n : ω(x, y) = 0 ∀y ∈ W}, we have
W = W⊥ [Lee13, p. 566].

Lemma 5.2 (Qualitative properties of X s). The subspace X s ⊆ C2n is Ω-Lagrangian and M(δ)-
invariant for all δ > 0.

Proof. From Lemma 3.1, specifically (3.3), it follows that

θ′ =X11J
sX−1

11 + 2δSwX21J
sX−1

11 , (5.1a)

X21X
−1
11 =θ

′TX21J
sX−1

11 +Q. (5.1b)

Combining (5.1a) and (5.1b) yields

X21X
−1
11 = (X11J

sX−1
11 )TX21X

−1
11 (X11J

sX−1
11 ) +Q+ 2δ(X21J

sX−1
11 )TSw(X21J

sX−1
11 ).
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Hence, X21X
−1
11 is symmetric such that

im

(
In

X21X
−1
11

)
is Ω-Lagrangian since for any x, y ∈ X s:

ω(x, y) = uH
(
In

(
X21X

−1
11

)T)(0n×n −In
In 0n×n

)(
In

X21X
−1
11

)
v = 0 ∀u, v ∈ Cn.

Now, by multiplying both u and v from the left with X11 ∈ GL(n,C) we see that X s is Ω-
Lagrangian as well. Moreover, by the Jordan normal form construction of Xs it follows that X s is
M(δ)-invariant.

As in [Meh+09], to study the stability of these invariant Lagrangian subspaces define the gap
between subspaces W ⊆ Cm and U ⊆ Cm by

gap(W,U) = ∥PW − PU∥2, (5.2)

for PW being the orthogonal projection operator, mapping any x ∈ Cm onto W . The next lemma
tells us that if the gap (5.2) between two subspaces of equal dimension can be made arbitrarily
small, then, there are generators (basis matrices) which are arbitrary close in norm.

Lemma 5.3 (Continuity). Let W,Wε ⊆ Cm be p-dimensional subspaces generated by W = im(X)
and Wε = im(Xε) for a fixed full-rank X ∈ Cm×p with p ≤ m and some full-rank Xε ∈ Cm×p, such
that gap(W,Wε) < ε for ε > 0. Then, if for some sequence {Wε}ε we have limε→0 gap(W,Wε) = 0
there exists a sequence {Xε}ε such that Wε = im(Xε) and limε→0 ∥X −Xε∥2 = 0.

Proof. First, we write (5.2) explicitly as:

gap(W,Wε) =
∥∥X(XHX)−1XH −Xε(X

H
ε Xε)

−1XH
ε

∥∥
2
< ε. (5.3)

Observe that the evaluation of (5.3) for Xε or XεT , T ∈ GL(p,C) is equivalent. Then, since the
projection map Π : Cm×p → Cm×m defined by Π(X) = X(XTX)−1XT is continuous at full-rank
matrices, which compromise an open set of Cm×p, the result follows.

Regarding stability we use the following definition from [Meh+09], for the moment we overload
the meaning of δ.

Definition 5.4 (Ω-stable invariant subspace [Meh+09, Definition 3.1]). Let M ∈ R2n×2n be Ω-
symplectic and X ⊆ C2n be a M -invariant Ω-Lagrangian subspace. Then, X is Ω-stable if ∀ ε > 0
there is a δ > 0 such that if M ′ ∈ R2n×2n is Ω-symplectic and ∥M −M ′∥2 < δ, then, there is a
M ′-invariant Ω-Lagrangian subspace X ′ ⊆ Cm such that gap(X ,X ′) < ε.

To continue, let D1 = {z ∈ C : |z| < 1} be a subset of the complex plane C and recall that uni-
modular eigenvalues are elements of ∂D1. Now we state one of the main results from [Meh+09]:

Lemma 5.5 ([Meh+09, Corollary 7.3]). Let M ∈ R2n×2n be Ω-symplectic. Then, if and only if
M has no unimodular eigenvalues there exist unique Ω-stable M -invariant Ω-Lagrangian subspaces
X s,X u ⊆ C2n such that λ(M |X s) ⊆ D1 and λ(M |Xu) ⊆ C \ cl(D1).

The ramification of Lemma 5.5 is as follows. By construction, M(δ) does not have unimodular
eigenvalues, otherwise M(δ) would not lead to a stabilizing solution of the Riccati equation (2.4).
As such, a combination of Lemma 5.2 and Lemma 5.5 shows that X s is stable — in the sense of
Definition 5.4 — with respect to feasible perturbations in the pair (δ,Q). Hence, discontinuities as
in Example 5.1 do not pertain to our setting and we find that Q should be at least continuous in
δ, e.g., Q = 2δSw indeed.

• (Ω-stability): Q(δ) being continuous in δ.

The next section shows the benefits of selecting Q to be differentiable in δ.
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6 Symplectic perturbation theory

“We use neither the differentiable structure of the symplectic group nor the Lie algebra structure
of Hamiltonian matrices.” —[BIM11].
In standard LQR parlance, we only consider perturbations in the pair of cost matrices (Q,R), in
our notation of Section 2, (Q, (2δSw)

−1). Most of the related work on Riccati perturbations present
implicit bounds, see for example [Sun98]. By exploiting the Lie group structure of Sp(2n,R) we
get more explicit insights. To do so we take a continuous-time approach.

6.1 Perturbations and the exponential map The Lie group point of view is viable since the
exponential map exp : g → G reduces to the matrix exponential when G is a matrix Lie group,
e.g., for any t ∈ R and X ∈ g one has

exp(tX) =
∑
k≥0

1

k!
(tX)k,

see [Var84; DK99]. To that end, assume that exp(t1X)M(δ(t0)) = M(δ(t1)) holds for some
X ∈ sp(2n,R) implicitly defined by M(δ(t)), a path in Sp(2n,R) parametrized by t ∈ [t0, t1]
for a sufficiently small interval. In what follows we consider without loss of generality the non-
empty interval [0, s]. We also assume for simplicity of the exposition that δ(t) is affine in t, e.g.,
δ(t) = δ0 − t, for t ∈ [0, δ0).

Going beyond mere continuity, as derived to be necessary in the previous section, now also
assume that Q is a smooth function (at least differentiable) in δ, i.e., Q(δ) ≻ 0 for all δ > 0 and
dQ : R>0 → Sym(n). Under this assumption, compute

∂δM(δ)|δ=δ′ =

(
2Swθ

′−TQ(δ′) + 2δ′Swθ
′−T ∂δQ(δ)|δ=δ′ −2Swθ

′−T

−θ′−T ∂δQ(δ)|δ=δ′ 0n×n

)
. (6.1)

Then, since dtM(δ(t))|t=0 = XM(δ(0)) we find by computingX = ∂tδ(t)|t=0 ∂δM(δ)|δ(0) M(δ(0))−1

that

X = ∂tδ(t)|t=0

(
2δ0Swθ

′−T ∂δQ(δ)|δ=δ0
θ′−1 4δ20Swθ

′−T ∂δQ(δ)|δ=δ0
θ′−1Sw − 2Sw

−θ′−T ∂δQ(δ)|δ=δ0
θ′−1 −2δ0θ′−T ∂δQ(δ)|δ=δ0

θ′−1Sw

)
.

As ∂δQ(δ) ∈ Sym(n), one readily verifies that ΩX ∈ Sym(2n) and X ∈ sp(2n,R) indeed. As
M(δ(t)) is fixed, and exp : sp(2n,R)→ Sp(2n,R) is not surjective, this verification is necessary. We
see that if Q is constant, X is nilpotent. Moreover, ignoring ∂tδ(t)|t=0 by our linearity assumption,
we can conveniently factor5X as follows

X =

(
2δ0Sw

−In

)
θ′−T ∂δQ(δ)|δ=δ0

θ′−1
(
In 2δ0Sw

)
+

(
−In
0n×n

)(
0n×n 2Sw

)
. (6.2)

Let us write (6.2) as X = A1 + A2 for A1, A2 ∈ sp(2n,R). Now observe that both A2
1 = 0 and

A2
2 = 0, that is, A1 and A2 are nilpotent. However, (A1A2)

k is non-zero for any integer k ≥ 0, i.e.,
[A1, A2] ̸= 0. Hence, the dependency of Q on δ, even just linearly, makes exp(tX) non-trivial. In
particular, we find that

[A1, A2] =

(
−2Swθ

′−T ∂δQ(δ)|δ=δ0
θ′−1 0n×n

0n×n θ′−T ∂δQ(δ)|δ=δ0
θ′−12Sw

)
. (6.3)

One could interpret (6.3) as [X,A2] = [A1+A2, A2] = [A1, A2], which in its turn, one can interpret
in a Lie bracket context cf. [Arn10, Chapter 8], [NS90, Chapter 3]. With this in mind, the

5With respect to the factorization of X, note that

(
4δ 8δ2

−2 −4δ

)
=

(
2
√
2δ

−
√
2

)(√
2 2

√
2δ

)
.
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assignment of Q(δ) = d−1δdθ′T(2Sw)
−1θ′, for some integer d ≥ 2, results in a “well-conditioned”

bracket (6.3), regardless of the pair (θ′, Sw), with (arbitrarily) small norm,

[A1, A2] =

(
−δd−1

0 In 0n×n

0n×n δd−1
0 In

)
, (6.4)

i.e., for δ0 < 1 one damps out higher-order terms that could otherwise result from perturbations
in δ.

• (Higher-order damping): Q(δ) = d−1δdθ′T(2Sw)
−1θ′, for some integer d ≥ 2.

The downside of such a selection of Q(δ) is that one might damp-out beneficial parts as well.
Under this selection of Q(δ) we get

X = ∂tδ(t)|t=0

(
δd0In 2δd+1

0 Sw − 2Sw

−δd−1
0 (2Sw)

−1 −δd0In

)
. (6.5)

Regarding the spectrum of X, we see that
∑

i λi(X) = 0 indeed. Moreover, while ignoring
∂tδ(t)|t=0 again, evaluating6 det(X − λI2n) = 0 immediately implies that all eigenvalues of X

are ±(δd−1
0 )1/2. We see that the contribution of Sw is rendered out, for the better or worse.

6.1.1 Zassenhaus’ formula To keep the note remotely self-contained, we make the previous statement
regarding higher-order terms more explicit. First, observe that for any A1, A2 ∈ sp(2n,R) one can
expand the exponential map as follows

exp(A1 +A2) = I2n +A1 +A2 +
1
2A

2
1 +

1
2A

2
2 +

1
2A1A2 +

1
2A2A1 + h.o.t.

Now see that

exp(A1)exp(A2)exp(− 1
2 [A1, A2]) =

(I2n +A1 +
1
2A

2
1 + h.o.t.)(I2n +A2 +

1
2A

2
2 + h.o.t.)(I2n − 1

2 [A1, A2] + h.o.t.)

= I2n +A1 +A2 +
1
2A

2
1 +

1
2A

2
2 +

1
2A1A2 +

1
2A2A1 + h.o.t..

This simple observation illustrates Zassenhaus’ formula as formally stated below.
More generally, let X,Y ∈ g for some Lie algebra g, then the solution Z(X,Y ) ∈ g to

exp(X)exp(Y ) = exp(Z(X,Y )), (6.6a)

assuming it exists, is given by a series of the form

Z(X,Y ) = X + Y + 1
2 [X,Y ] + 1

12 ([[X,Y ], Y ] + [[Y,X], X]) + · · · , (6.6b)

e.g., see [Var84, § 2.15]. This formula is called the Baker-Campbell-Hausdorff formula. In
particular, let ∥ · ∥g be a sub-multiplicative norm on g, then, for any X,Y ∈ g such that ∥X∥g +
∥Y ∥g < log(2) the series (6.6b) converges to a solution (6.6a) [BBM20, Proposition 2.2]. For
example, consider the operator ∥ · ∥2 or Frobenius norm ∥ · ∥F , respectively, on sp(2n,R).

It turns out that a more useful expansion exists, bearing Zassenhaus’ name. Let g(A1, A2) ⊆
sp(2n,R) be the free Lie (sub)-algebra generated by A1, A2 ∈ sp(2n,R). Then, there exists the
unique decomposition

exp(A1 +A2) = exp(A1)exp(A2)

∞∏
n=2

exp(Cn(A1, A2)), (6.7)

6Due to the simple structure of (6.5), det(X − λI2n) = det((λ− δd0)(δ
d
0 + λ)In − (δd−1

0 − δ2d0 )In).
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where Cn ∈ g(A1, A2) is a homogeneous Lie polynomial of degree n7. See for example [CMN12]
for more background information on Zassenhaus’ formula (6.7). Evidently, when [A1, A2] ≈ 0,
then (6.7) implies that exp(A1+A2) ≈ exp(A1)exp(A2). As mentioned before, although convenient
from an analysis point of view, i.e., higher-order perturbation are largely independent of the pair
(θ′, Sw), these annihilated higher-order terms could have been potentially beneficial. The next
section takes a different point of view.

6.2 Approximate geodesics In this section we employ standard machinery from Riemannian ge-
ometry, e.g., see [Arn10, Appendix 2], to find Q as a function of δ such that M(δ(t)) is “approxi-
mately” a geodesic on Sp(2n,R). We are motivated to do so by existing multiplicative perturbation
results [MBO97; SM16; SMM20].

For any Lie group G, let Lg : G → G be the left-translation defined by Lg(h) = gh
for all g, h ∈ G. Now, a vector field X ∈ X(G) is left-invariant when (Lg)⋆X = X, i.e.,
d(Lg)h(Xh) = Xgh [Lee13, p. 189]. We will again focus on the real symplectic group Sp(2n,R),
yet not immediately on M as given by (4.1).

Given any X ∈ sp(2n,R), recall that gsp(2n,R) ≃ TgSp(2n,R)8 for all g ∈ Sp(2n,R). This
allows for defining a left-invariant (Riemannian) metric g9 on TgSp(2n,R) via

gg(X,Y ) = ⟨X,Y ⟩g = ⟨d(Lg−1)g(X), d(Lg−1)g(Y )⟩e (6.8)

for all X,Y ∈ TgSp(2n,R) and any g ∈ Sp(2n,R). Here we will simply use the Frobenius-metric,
⟨A,B⟩ = tr(ATB), as induced from Rn×n. Similarly, one could define those objects using the
right-translation operator Rg : G→ G. Equipped with the metric g, (Sp(2n,R), g) is a Riemannian
manifold.

Let T ∋ t 7→ M(t) ∈ Sp(2n,R) be some curve (not necessarily as in (4.1)), in particular,
a one-parameter subgroup10 defined via the exponential map etX , X ∈ sp(2n,R) that acts on
M(0), generally put as exp(tX)M(0) = M(t) for some reference point M(0) ∈ Sp(2n,R). This
construction gives rise to the differential equation Ṁ(t) = XM(t), e.g., a right-invariant vector
field on Sp(2n,R).

Now let Bi ∈ sp(2n,R), i ∈ I, form a basis for sp(2n,R), i.e., |I| = dim(sp(2n,R)). In the case
of sp(2n,R), any Hamiltonian matrix H ∈ sp(2n,R) can be written as

H =

(
A B
C −AT

)
, A ∈ Rn×n, B, C ∈ Sym(n).

Therefore, dim(sp(2n,R)) ≤ 2n2 + n. The basis {Bi}i∈I can be used to construct a set of right-

invariant vector fields {X(i)}i∈I ⊂ X(G), defined by X
(i)
g = (Rg)⋆Bi.

We say that a vector field X on a Riemannian manifold (M, g), under the metric g, is a Killing
vector field when LXg = 0 [Jos11, Definition 2.3.7], that is, the Lie derivative of g with respect
to X vanishes. Let [·, ·]L denote the Lie bracket, then it follows from [Lee13, Corollary 12.33] that
for left-invariant vector fields Y,Z and the metric (6.8) one has

LXg(Y, Z) = −g([X,Y ]L , Z)− g(Y, [X,Z]L ). (6.9)

Now, as right- and left-invariant vector fields on any Lie group commute, one has by our choice of
g that LXg = 0. Hence, when X is right-invariant, it is a Killing vector field under the metric g.

7For example, when n = 2, C2 is a polynomial with basis elements [A1, A1], [A2, A2], [A1, A2] and [A2, A1]. By
the Lie algebra structure, this collapses to a polynomial in [A1, A2].

8That is, TgSp(2n,R) = {gX : X ∈ sp(2n,R)} = {X : XTΩg + gTΩX = 0}.
9Common notation for such a metric would be “g”, yet we use g to denote elements of generic Lie groups G.

10The map φ(t) = exp(tX) induces a group homomorphism between (R,+) and (G, ·).
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Then, let γ : [0, s] → Sp(2n,R) be a geodesic. By construction (of the Killing vector fields),
we have that ⟨(Rγ(t))⋆Bi, γ̇(t)⟩γ(t) = Ci(t) is conserved over time. This can be seen, for example,
from (6.9) by plugging in the connection ∇. The conserved quantity can be rewritten as

Ci(t) = ⟨Biγ(t), γ̇(t)⟩γ(t) = ⟨γ(t)−1Biγ(t), γ(t)
−1γ̇(t)⟩e. (6.10)

Now consider the curve t 7→ γ(t) = M(t) = exp(tX)M(0), we aim to argue when a curve of such a
form can be a geodesic. Recall that in general we cannot assume that M(0) = I2n. Plugging this
curve into (6.10) yields

Ci(t) =⟨M−1
0 e−tXBie

tXM0,M
−1
0 e−tXXetXM0⟩e

=⟨M−1
0 e−tXBie

tXM0,M
−1
0 XM0⟩e.

(6.11)

Then, differentiating with respect to time results in

0 = dtCi(t) =⟨M−1
t [Bi, X]Mt,M

−1
0 XM0⟩e

=⟨M−1
0 e−tX [Bi, X]etXM0,M

−1
0 XM0⟩e

=⟨M−1
0 e−tX [Bi, X]etXM0,M

−1
0 e−tXXetXM0⟩e.

At last, by the trace-inequality (??) we have that ⟨[Bi, X], X⟩e = 0 =⇒ dtCi(t) = 0.

Lemma 6.1 (Approximately geodesic). Let X be as in (6.2), and set Q(δ) = 2δθ′TSwθ
′, then, for

all i ∈ I
⟨[Bi, X], X⟩e ≤ O

(
tr(δ4S8

w)
1/2
)
tr(Bi). (6.12)

Proof. First, see that [X,XT] = 0 =⇒ ⟨[Bi, X], X⟩e = 0 for all i ∈ I. As before, we can omit
∂tδ(t)|t=0, such that we can conveniently write down X ∈ sp(2n,R) as

X =

(
δEF δ2EFE − E
−F −δFE

)
, E = 2Sw, F = θ′−T ∂δQ(δ)|δ=δ0

θ′−1.

Note that both E and F are symmetric. Under this compact notation and the selection of Q such
that F = E, one obtains

XXT =

(
δ2E4 + E2 + 2δ2E4 + δ4E6 −δE3 + δE3 − δ3E5

−δE3 + δE3 − δ3E5 E2 + δ2E4

)
XTX =

(
δ2E4 + E2 δE3 − δE3 + δ3E5

δE3 − δE3 + δ3E5 δ2E4 + E2 + 2δ2E4 + δ4E6

)
and subsequently

[X,XT] =

(
2δ2E4 + δ4E6 −2δ3E5

−2δ3E5 −2δ2E4 − δ4E6

)
.

In particular, we have ∥[X,XT]∥2F = 2tr
(
(2δ2E4 + δ4E6)2 + (2δ3E5)2

)
. Such that (6.12) follows

since ⟨[Bi, X], X⟩e ≤ ∥[X,XT]∥F tr(Bi).

As exp : Sp(2n,R)→ sp(2n,R) is not surjective, M(δ(t)) might be impossible to reach via the
application of exp(tX) to some M(δ(0)). However, the curve M(δ(t)) can be arbitrarily close to
being the image of the exponential map.

Lemma 6.2 (Approximately exponential). Let θ′ ∈ Θ′, Sw ≻ 0, assume that ρ(Sw) < 1 and
consider M(δ(t)) as in (4.1) for δ(t) = δ0 − t, t ∈ [0, δ0) and δ(0) = δ0 ∈ (0, 1). Set Q(δ) =
2δθ′Swθ

′T, then, for all t ∈ (0, δ0)

∥M(δ(t))− exp(tX)M(δ(0))∥∞ ≤ δ40∥S4
w∥∞. (6.13)
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Proof. One can show that the for the curve t 7→M(δ(t)) = M(t) we have

Ṁ(t) = lim
h↓0

M(δ(t+ h))−M(δ(t))

h
= XM(t) + h.o.t.,

where the higher-order terms are of the order O((δ0 − t)3S4
w) (due to ρ(Sw) < 1). Now let

Ṅ(δ(t)) = XN(δ(t)) be a surrogate equation that does satisfy the exponential equation, that is,
N(δ(t)) = exp(tX)N(δ(0)), with N(δ(0)) = M(δ(0)). As∫ t

0

(δ0 − s)3S4
wds =

1

4
(δ40 − (δ0 − t)4)S4

w ⪯ δ40S
4
w,

one can easily bound ∥M(δ(t))−N(δ(t))∥∞, resulting immediately in the uniform bound (6.13).

Lemma 6.1 in combination with Lemma 6.2 indicates that if δ0 ∈ (0, 1) and Sw is sufficiently
“small”, e.g., ρ(Sw) < 1, then Q(δ) = 2δθ′TSwθ

′ results in exp(tX)M(δ(0)) being approximately
geodesic for sufficiently small t.

• (Approximately geodesic): Q(δ) = 2δθ′TSwθ
′.

Conceptually, the geodesic perspective is appealing from a numerical point of view as by the
variational properties of such a curve and the first-order perturbation theory [MBO97; SM16;
SMM20] one would expect little erratic behaviour.

7 Algorithms and numerical experiments

7.1 Algorithms There are as many algorithms to solve algebraic Riccati equations, as these equations
have solutions in general.

Besides the aforementioned QZ method — which is frequently used in standard dlqr(·) routines
— we highlight a few other approaches. The most straight-forward method to approximately solve
for θ⋆δ is by means of value iteration [LR95; Ber05; Ber07], i.e.,

Pδ,k+1 = Q+ θ′
T
Pδ,k (In + 2δSwPδ,k)

−1
θ′. (7.1)

for some suitable choice of Pδ,0, e.g., Pδ,0 = Q. Speed-ups are possible using doubling [LX06].
The so-called square-root method due to Lu, Lin, and Pearce [LLP99] proceeds as follows, let
H = (S1 + S2)

−1(S1 − S2), then, im(H − sqrt(H2)) = X s. Although efficient, we clearly face
potential problems with conditioning due to θ ∈ Θ and δ ↓ 0. Another relatively simple method
is the sign method, see for example [GL86]. Regarding the QZ method. Exploiting scaling akin
to (2.6) is known to allow for the QZ method to be better conditioned [GKL92], ideally, ∥Pδ∥2 is
small [GKL92, Lemma 1], or differently put, δ = ∥Pδ∥2. To that end, see Lemma 7.1 below. For
related benchmark problems see [BLM97] and for an extensive overview of numerical algorithms
see [BIM11].

7.1.1 Implementing the QZ algorithm Here, we highlight the computational aspects of the gen-
eralized Schur decomposition for a fixed δ > 0. The QZ algorithm is employed to construct the
decomposition as set forth in Lemma 3.6, the algorithm is backward stable and requires O(n3) flops
in general [GL13, Algorithm 7.7.3]. However, we need to extract n columns from Z correspond-
ing to the stable eigenspace, which in general, can be any of the 2n columns. Hence, we seek a
pair of orthogonal matrices (Q′, Z ′) such that (Q′TQTS1ZZ ′, Q′TQTS2ZZ ′) does have the desired
order, by somewhat of a convention, the first n columns of ZZ ′ span X s. Note, the generalized
eigenvalues are easily accessible via the diagonals of QTS1Z and QTS2Z. Initial stable reorder-
ing schemes, which do not make the computational complexity worse, were proposed in [VD81].
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Algorithm 1 For a fixed δ > 0, the computation of Pδ, the solution to the algebraic equation (2.4),
and the corresponding stabilized system matrix θ⋆δ as given by (2.5) (pseudo-Julia code).

1: Input: δ ∈ R>0, Q ∈ Sn≻0, θ
′ ∈ Rn×n, Sw ∈ Sn≻0 and (S1(δ,Q, θ′), S2(δ, θ

′, Sw)) as in (3.1).
2: Initial step of the QZ algorithm: QZ = schur(S1,S2).
3: Select the stable eigenvalues: select = abs.(QZ.alpha./QZ.beta).< 1.
4: Reorder the generalized Schur decomposition: QZreord = ordschur(QZ,select).
5: Construct U via (3.8) U = QZreord.Z[:,1:n] and R via R = (S2*U)\(S1*U).
6: Output: Pδ = U21U

−1
11 , θ⋆δ = U11RU−1

11 and QZreord.

See [Kre05, Chapter 2] for more on the QZ algorithm and specifically [Kre05, Section 2.7] for more
on numerically stable reordering. To actually perform the computation, we need just a handful of
LAPACK [And+99] routines, which are easily accessible via Julia [Bez+17]. Specifically, we can
call the schur(·) and ordschur(·) functions in Julia to compute an initial generalized Schur decom-
position of (S1, S2) and, if desired, reorder the corresponding (generalized) eigenvalues. From this
(updated) orthogonal Z, and the definition of U in (3.8), we obtain Pδ by solving PδU11 = U21. We
like to remark that if the (generalized) eigenvalues of the pair (S1, S2) are close to ∂D1 one might
want to consider a QZ algorithm that does takes the symplectic structure into account [BF98]. By
the coercive nature of the rate function (1.2) we effectively avoid this problem almost surely.

Regarding scalability, already in 1984, the Schur method, e.g., Algorithm 1, was deemed to be
reliable for n ≈ 100 [AL84]. However, since we generically need O(n3) flops and O(n2) memory, for
large scale problems one might want to exploit the structure of θ′ or resort to different schemes like
proposed in [GL91; BF11]. Besides, as indicated in [AL84; Bye87], some problem instances might
benefit from a combination of algorithms, e.g., a Schur decomposition and Newton’s method, for
example to refine a solution. For now we will conclude that an efficient and stable method exists
to solve (2.4). Although this observation in itself is not new, it is striking that a non-convex
optimization problem, derived from a moderate deviation principle, can be solved using a basic
routine from numerical linear algebra.

In Algorithm 1 we present (sub-optimal) pseudo-Julia-code11 to compute Pδ. One can easily
skip the computation of Pδ and directly compute θ⋆δ if desired. Note that when θ′ is invertible, R is
given by UTM(δ)U . Better yet, after re-ordering, θ⋆δ is directly given by the left-most upper-block
of M(δ).

7.1.2 Stopping conditions Most of the aforementioned indicates that one should use a “sufficiently
small” δ ∈ (0, 1) but only this information does not yield a practical algorithm. Given some
monotonically decreasing sequence {δk}k ⊂ R>0 such that δk ↓ 0 for k → +∞, we propose to use
one of the following absolute or relative stopping conditions

|ρ(θ⋆δk)− ρ(θ⋆δk−1
)| ≤ ϵabs,

|ρ(θ⋆δk)− ρ(θ⋆δk−1
)|

|δk−1 − δk|
≤ ϵrel,

respectively, for some ϵabs > 0 and ϵrel > 0. This approach can be motivated by the fact that
the QZ method outputs the spectrum of θ⋆δ (implicitly via α and β) and by the following result
together with the fact that θ⋆δ = (In + 2δSwPδ)

−1θ′.

Lemma 7.1 (Ordering of Pδ). Given some appropriate triple (θ′, Q, Sw), let δ1, δ2 ∈ R>0 be such
that δ1 ≥ δ2, then, δ1Pδ1 ⪰ δ2Pδ2 , for Pδi solving (2.4) under δi.

Proof. Pre-multiplying (2.4) by δi yields

δiPδi = δiQ+ θ′
T
δiPδi (In + 2SwδiPδi)

−1
θ′.

11See https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.Schur

https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.Schur
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Hence, without loss of generality we consider the problem of solving dlqr(θ′, In, δiQ, (2Sw)
−1), In

fact, by a change of coordinates xt = (2Sw)
1/2zt, with respect to (1.1), we can consider simply

dlqr(θ̃′, In, δiQ, In), for θ̃′ = S
−1/2
w θ′S

1/2
w . Now consider the iterative (dynamic programming)

approach to solve for Pδi , that is, (7.1). Set Pδi,0 = δiQ such that Pδ1,0 ⪰ Pδ2,0. Now, by (7.1)
and an inductive argument, this ordering prevails.

7.2 Iteratively balanced QZ algorithm The motivation for having an algorithm that uses prior
knowledge is twofold. First of all, going back to the motivation of this work, the reverse I-projection
maps the least squares estimator θ̂T of θ to an asymptotically stable matrix. Assuming that more
data is coming, the next estimator, that is θ̂T+1 is likely to be close to θ̂T , so the computation of
its reverse I-projection should exploit information of the previous projection step. Moreover, the
proposed computation of the reverse I-projection hinges on iteratively computing a generalized
Schur decomposition parametric in δk, where δk is an element of a sequence such that δk → 0.
Again, ideally, the decomposition under δk+1 uses information regarding the decomposition under
δk.

Given a sequence of symplectic pairs {Ak, Bk}k≥0 ⊂ R2n×2n × R2n×2n, we are tasked with
computing the generalized Schur decomposition for each step k. If (Ak−1, Bk−1) is sufficiently
close — which we will make more precise shortly — to (Ak, Bk), then one might hope to reuse
knowledge of the previous factorization and thereby speed-up the process. Part of this motivation
stems from the backward stability of the QZ algorithm. The “balancing” work due to Ward [War81]
is one of the earliest in this area. Unfortunately, as also stated in [Kre05, p. 92], balancing can
make things worse.

First, consider doing the following, given a pair (Ak, Bk) compute the initial generalized Schur
decomposition, which yields the pair (Qk, Zk). Next, (if needed) perform a reordering step and
update the QZ decomposition, that is, we apply an additional pair of matrices (Q′

k, Z
′
k). The

resulting decomposition Q′T
k QT

kAkZkZ
′
k, Q

′T
k QT

kBkZkZ
′
k is used. Then, a new pair (Ak+1, Bk+1) is

received and pre-multiplied by the previous QZ transformation, that is, we start the QZ algorithm
from Q′T

k QT
kAk+1ZkZ

′
k, Q

′T
k QT

kBk+1ZkZ
′
k.

Evidently, this can only work if the sequence {Ak, Bk}k≥0 is sufficiently well-behaved. The
hope is that this pre-processing step results in (numerical) structure that can be exploited.

Here, we could consider exploiting the algebra formed by upper-triangular matrices. Let
QT

kBkZk and QT
kBk+1Zk both be upper-triangular. Then, QT

kBkZkQ
T
kBk+1Zk is upper-triangular.

In fact, QT
kBkB

−1
k+1Qk must be upper-triangular. Differently put, BkB

−1
k+1 must be triangulizable

by means on an orthogonal similarity transformation. This is rather a weak condition, yet merely
a necessary one in case Bk+1 is invertible. In fact, S2(δk)S2(δk+1)

−1 is by construction already
upper-triangular, for any choice of δk, δk+1. The non-trivial part is the fact that S1(δ) is lower
block-triangular, while S2(δ) is upper block-triangular.

To see what can go wrong in principle without exploiting prior QZ steps, consider the pair
(S1, S2) with n = 1. Then for S1, the Schur decomposition yields in general(

0 1
1 0

)(
θ′ 0
q 1

)(
0 1
1 0

)
=

(
1 q
0 θ′

)
.

However, when q > 0 is chosen as a function of δ and thereby becomes arbitrarily small for δ ↓ 0,
the Q and Z matrices tend (discontinuously) to I2. If initialized using our proposed method, this
is avoided.

The next example elaborates on this observation.

Example 7.2 (Obstruction to convergence). Let us compute θ⋆δ by means of the QZ algorithm, e.g.,
Algorithm 1, but without using prior knowledge. Let {δk}k≥0 ⊂ R>0 be a sequence converging
monotonically to 0. If there is a k such that max{∥Q(δk)∥∞, ∥2δkSw∥∞} = µ, then, we claim
that θ⋆δk does not necessarily converge to something meaningful. See that one can construct the (a)
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generalized Schur decomposition explicitly. For example, let QT
1 θ

′Q1 = R1 be the Schur decomposi-
tion of θ′ and similarly, let QT

2 θ
′TQ2 = R2 be the Schur decomposition of θ′T. As the off-diagonal

(block) terms of the pair (S1, S2) are (numerically) zero, a potential output of the QZ algorithm
could simply be Q = diag(Q1, Q2), Z = diag(Q1, Q2). Such a solution will be useless in general
and can lead to ρ(θ⋆δk) blowing up. The crux is that the QZ algorithm does not lead to a unique
decomposition in general.

Now we highlight how the obstruction from Example 7.2 can be overcome, while also speeding
up the process.

In practice one would consider a sequence {δk}k≥0, yet for expositional simplicity, assume that
δ(t) is curve, e.g., t 7→ δ(t) = δ0exp(−t) such that Q(δ(t)) → 0n×n ∈ ∂Sn≻0, monotonically in
Löwner order, for t→ +∞. At any given finite time t, one has the following (ordered) generalized
Schur decomposition of S1:(

Q11(t)
T Q21(t)

T

Q12(t)
T Q22(t)

T

)(
θ′ 0n×n

Q(δ(t)) In

)(
Z11(t) Z12(t)
Z21(t) Z22(t)

)
=

(
R11(t) ⋆
0n×n R22(t)

)
, (7.2)

with abuse of notation regarding Q, i.e., Q(t) versus Q(δ(t)). As Q(t), Z(t) ∈ O(2n,R), ∥Q(t)∥∞ ≤
1, ∥Z(t)∥∞ ≤ 1 for all t ∈ R≥0. Then, since Q(δ(t)) decreases monotonically with increasing t,
there is a T such that for all t ≥ T , Q(T )TS1(δ(t))Z(T ) is quasi upper-triangular up to machine
precision. A similar argument can be made regarding S2(δ(t)). Moreover, “deflation” is commonly
applied to the subdiagonal elements of S1, that is, small elements are set to 0 [Kre05, Section 2.3.4].
Differently put, for sufficiently large t one either lands at the Hessenberg-triangular reduction
step cf. [GL13, Algorithm 7.7.1], or at the final QZ step, both up to numerical precision.

Now, let us assume that mini{λi(θ
′)} ≫ µ, such that the diagonal of R(t) only contains terms

sufficiently far away from 0. Under this assumption no structural changes can occur.

The QZ algorithm might proceed to remove excess terms using 2n × 2n-dimensional Givens
rotations12, that is, matrices of the form

Ii−1 0 0 0 0
0 cos(ϕ) 0 sin(ϕ) 0
0 0 Ij−i−1 0 0
0 − sin(ϕ) 0 cos(ϕ) 0
0 0 0 0 I2n−j

 , (7.3)

for i < j and ϕ ∈ [−π/2, π/2) [Kre05, p. 77], [GL13, Section 5.1.8]. However, now see that for
some ϵ > 0 close to 0, we have(

cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

)(
a b
ϵ c

)
=

(√
a2 + ϵ2 ⋆
0 ⋆

)

by selecting ϕ such that cos(ϕ) = a/(
√
a2 + ϵ2), sin(ϕ) = ϵ/(

√
a2 + ϵ2). As such, for ϵ ≈ 0, the

rotation is close to I2. Summarizing, not only does this procedure largely13 preserve the structure
of (Q(t), Z(t)) for t → +∞, we also reduce the computational cost as the QZ algorithm will be
eventually initialized close to the solution, which is particularly exacerbated for larger n. This
scheme is summarized as Algorithm 2.

Also, although we will not embark on this, but to deal with large data-streams we ought it
imperative to remark that one can implement (1.2) recursively, e.g., see [Kum90].

12Depending on conventions, one might consider the transpose of (7.3).
13We do potentially break the symplectic structure.
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Algorithm 2 Numerical reverse I-projection of θ′ (pseudo-Julia code).

1: Input: Iteration limit maxIter∈ N, monotonically decreasing sequence (δk)k≤maxIter ⊂ R>0,
Q ∈ Cr≥1(R>0,Sn≻0), θ

′ ∈ Rn×n, Sw ∈ Sn≻0, stopping condition parameter ϵ > 0.
2: Set Qtemp = I2n, Ztemp = I2n, k = 0.
3: while (stopping condition > ϵ and k ≤ maxIter) do
4: S1 = QtempTS1(δk, Q(δk), θ

′)Ztemp, S2 = QtempTS2(δk, θ
′, Sw)Ztemp.

5: [Pδk , θδk , QZ reord] = Algorithm 1 (δk, Q(δk), θ
′, Sw, S1, S2).

6: Qtemp ← QZ reord.Q, Ztemp ← QZ reord.Z, k ← k + 1.
7: end while
8: Output: θ⋆δk .

7.2.1 Symplectic balancing As alluded to before, the balancing proposed above using does not nec-
essarily preserve the underlying symplectic structure of the problem14. Preserving this structure
can be beneficial when the spectrum spec(S1, S2) contains elements close to ∂D1, in that case, the
symplectic structure enforces pairs of stable- and unstable eigenvalues.

Due to the block-structure of elements in Sp(2n,R) one can conveniently characterize all ele-
ments of O(2n,R) ∩ Sp(2n,R) = OSp(2n,R) by

OSp(2n,R) =
{(

A B
−B A

)
∈ R2n×2n : ATB = BTA, ATA+BTB = In

}
. (7.4)

Reconsidering (7.2) under the standing assumption that the first n colums of n span X s, it seems
beneficial to preserve those n columns and preferably R11. Let the pair (Q,Z) correspond to the
generalized Schur decomposition of the pair (S1, S2), then, given the structure of OSp(2n,R), the
corresponding symplectic matrices Q̃ and Z̃ are fixed and given by

Q̃ =

(
Q11 −Q21

Q21 Q11

)
, Z̃ =

(
Z11 −Z21

Z21 Z11

)
.

Here, we appeal to the Laub-Mehrmann-trick, cf. [Meh88]. By exploiting that Z21Z
−1
11 ≻ 0, it

follows that Z̃TZ̃ = In and Z̃TΩZ̃ = Ω. As such, Z̃ ∈ OSp(2n,R) indeed. In general, given a
symplectic pair (S1, S2), then, (Q

TS1Z,Q
TS2Z) is a symplectic pair for any Z ∈ OSp(2n,R) and

Q ∈ O(2n,R) since

(QTS1Z)Ω(QTS1Z)T = QTS1ΩS
T
1 Q = QTS2ΩS

T
2 Q = (QTS2Z)Ω(QTS2Z)T.

With these observation in mind, one can adapt Algorithm 2, that is, by using the pair (Q̃, Z̃)
instead of (Q,Z).

7.3 Numerical experiments In this section we showcase the effect of the previous analysis on the
computation of θ⋆δ . Colloquially speaking, the ideal behaviour should display: (a) fast convergence
of θ⋆δk for δk ↓ 0, so that choice of {δk}k≥0 ⊂ R>0 is not critical; (b) fast computation of θ⋆δ ,
with the computational time invariant under the choice of δ > 0; (c) convergence and computation
without numerical instabilities, if δ1 ≈ δ2, then always θ⋆δ1 ≈ θ⋆δ2 . Throughout we use the shorthand

notation Q⋆ = 2−1δ2θ′T(2Sw)
−1θ′ and Q⋆ = 2δθ′TSwθ

′.

14The most simple example of a matrix in O(2n,R) \ Sp(2n,R) would be a reflection of the form

Z =

(
−In 0n×n

0n×n In

)
.
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(a) n = 10 (b) n = 100

Figure 7.1: Numerical experiments (250 per δ), computing θ⋆δ for vec(θ′) ∼ N (0, In2) under different
choices of Q and Sw = In. Each figure displays all available data.

(a) n = 10 (b) n = 100

Figure 7.2: Numerical experiments (250 per δ), computing θ⋆δ for vec(θ′) ∼ N (0, In2) under different
choices of Q and Sw = LTL for vec(L) ∼ N (0, In2). Each figure displays all available data.

(a) n = 10 (b) n = 10

Figure 7.3: Numerical experiments (250 per δ), computing θ⋆δ for vec(θ′) ∼ N (0, In2) under different
choices of Q and (a) Sw = In or (b) Sw = LTL for vec(L) ∼ N (0, In2). Each figure displays all available
data.

(i) (Basic scaling) In the first experiment we only employ the QZ method, i.e., Algorithm 1,
under a range of δ > 0 and different choices of Q(δ). Figure 7.1, displays the results for
a fixed Sw, whereas Figure 7.2 shows the average performance under different Sw, these
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(a) Convergence for n = 10 (b) Time to compute θ⋆δ for n = 10

Figure 7.4: Numerical experiments (250 per δ), computing θ⋆δ by means of the QZ algoritm or Julia’s
dlqr(·) routine, for vec(θ′) ∼ N (0, In2) under different choices of Q and Sw = (1/n2)In. Each figure
displays all available data.

random Sw are by construction potentially ill-conditioned. Overall, the scaling as derived
in Section 6.1 outperforms the other methods. One might argue that the aforementioned
observations rely on the difference in δ, that is, O(δ2) versus O(δ) and O(1). To that end we
show in Figure 7.3 how Q⋆ compares to for instance Q(δ) = 2δ2Sw. Indeed, the conditioning
as derived in Section 6.1 remains beneficial.

(ii) (QZ versus dlqr) The second experiment emphasizes this observation. Here, we compare
the QZ method under Q⋆ and Q⋆ with the standard dlqr routine from Julia, also under Q⋆

and Q⋆, denoted dlqr⋆ and dlqr⋆, respectively. Figure 7.4 shows that the QZ method is well-
conditioned, in contrast to the standard routine, and faster. We remark that when dlqr would
fail to compute θ⋆δ we set θ⋆δ = +∞In. In particular, we only showcase the experiments for
n = 10 as the for higher dimensions the dlqr routine fails too frequently.

(iii) (Q⋆ versus Q⋆) Most of the previous experiments consider relatively large Sw and prohibit
the selection of Q⋆. In practice, however, it is unlikely that Sw = O(In), we expect Sw

to be orders of magnitude smaller. Under such an assumption we compare Q⋆ and Q⋆ in
Figure 7.5-7.6. Indeed, for sufficiently small Sw, Q⋆ outperforms Q⋆. Concurrently, Figure 7.5
is shown to convey how small δ can be while having a numerically stable algorithm, in these
experiments we could use δ = 10−20, which is far below what standard dlqr routines would
allow for. Overall we see that for “large” Sw one could employ Q⋆ whereas for “small” Sw,
Q⋆ is recommended.

(iv) (QZ versus iteratively balanced QZ) Here we show how the iterative method from Section 7.2
improves upon a QZ method that does not exploit prior knowledge, i.e., a method that
simply computes θ⋆δ given the 4-tuple (δ,Q(δ), θ′, Sw). In Figure 7.7-7.8 we compare these
two approaches under Q⋆. One can observe that the iterative method is indeed faster and
the scenario as sketched in Example 7.2 is avoided, in contrast to the standard approach.

(v) (Symplectic balancing) At last, we show that for somewhat ill-conditioned problems, the
symplectic balancing from Section 7.2.1 can be beneficial, see Figure 7.9.

All numerical experiments were performed using Julia [Bez+17] on a i7-8550U CPU laptop
with 16Gb RAM.
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(a) n = 10 (b) n = 10

Figure 7.5: Numerical experiments (250 per δ), computing θ⋆δ for vec(θ′) ∼ N (0, In2) under different
choices of Q and (a) Sw = (1/n2)LTL or (b) Sw = LTL for vec(L) ∼ N (0, In2). Each figure displays all
available data.

(a) n = 100 (b) n = 100

Figure 7.6: Numerical experiments (250 per δ), computing θ⋆δ for vec(θ′) ∼ N (0, In2) under different
choices of Q and (a) Sw = (1/n2)LTL or (b) Sw = LTL for vec(L) ∼ N (0, In2). Each figure displays all
available data.

(a) Convergence for n = 10 (b) Time to compute θ⋆δ for n = 10

Figure 7.7: Numerical experiments (250 per δ), computing θ⋆δ using either the standard QZ algorithm
(QZ) or the iterative scheme from Section 7.2 (QZ(iter)), for vec(θ′) ∼ N (0, In2) under Q⋆ and Sw =
(1/n2)In. Each figure displays all available data.
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(a) Convergence for n = 100 (b) Time to compute θ⋆δ for n = 100

Figure 7.8: Numerical experiments (250 per δ), computing θ⋆δ using either the standard QZ algorithm
(QZ) or the iterative scheme from Section 7.2 (QZ(iter)), for vec(θ′) ∼ N (0, In2) under Q⋆ and Sw =
(1/n2)In. Each figure displays all available data.

(a) Spectral errors for n = 50 (b) Time to compute θ⋆δ for n = 50

Figure 7.9: Numerical experiments (250 per δ), computing θ⋆δ by means of Algorithm 2 (QZ⋆(iter)) and
Algorithm 2 under symplectic balancing from Section 7.2.1 (QZ⋆(Ω− iter)). This, for θ′ = In + δ ·∆ with
vec(∆) ∼ N (0, In2), under Q⋆ and Sw = (1/n2)In. Each figure displays all available data.

8 Conclusion and future work

This note elaborates on computational aspects of the work in [JSK23], cf. see Section 2. Exploiting
the symplectic structure of the underlying LQR problem, a numerically appropriate algorithm,
together with a selection of the cost matrix Q, is proposed. Numerical experiments show that
under these cost matrices, the algorithm outperforms standard LQR routines and the sub-optimal
selection of Q = In, as initially proposed in [JSK23].

Taking a continuous-time perspective akin to [KLS16] is left for future work. With respect
to Section 7.1.2, another topic of interest is to formalize the improved performance due to the
iterative QZ approach sketched in Section 7.2. In particular, explicit error bounds are envisioned.
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