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The basic question
For f : D CR™ — R, how to find

x* € argmin f(z)?
z€D
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Th1 = T — pkV [ (2k).
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The basic question

For f : D CR™ — R, how to find

x* € argmin f(z)?
z€D

Common approach: gradient descent
Thy1 = T — PV [ (Tk). (1)
Let f be convex and differentiable with a L-Lipschitz gradient
IVf(z) =Vl < Lz —yll2, Ve,y €D,

then for p, = + and xo, @1, ...,zKx—1 generated by (1) one obtains

* L'on_x*H%
flax1)— f@) <O (K)
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Do we always have the gradient?

Let f represent aerodynamic performance and x represent design parameters,
what is V f(z)?

Anvmsty | iyt | S | G | 50

AWR*[® =

1https ://wwu.youtube.com/watch?v=-mAHCq2dnKk&ab_channel=KapilGaitonde
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Do we always have the gradient?

Let f represent aerodynamic performance and x represent design parameters,
what is V f(z)?

P

AWK #® =

nemTwol |

Idea: we can evaluate f(z') for some design choice 2’. *

1 https://www.youtube.com/watch?v=-mAHCq2dnKk&ab_channel=KapilGaitonde
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Zeroth order optimization

Obtain (approximate)

x* € argmin f(z)
z€D

via function evaluations f(zo), f(z1),..., f(xk) for some set of selected

points xo,x1,...,TK.

2Conn, Scheinberg, and Vicente 2009.
3Nernirovsky and Yudin 1983; Flaxman, Kalai, and McMahan 2004; Nesterov and Spokoiny 2017.
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Zeroth order optimization

Obtain (approximate)

x* € argmin f(z)
z€D

via function evaluations f(zo), f(z1),..., f(xk) for some set of selected
points xo,x1,...,TK.

» Model-based: construct local model of f, optimize using that function?.

2Conn, Scheinberg, and Vicente 2009.
3Nernirovsky and Yudin 1983; Flaxman, Kalai, and McMahan 2004; Nesterov and Spokoiny 2017.
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Zeroth order optimization

Obtain (approximate)

x* € argmin f(z)
z€D

via function evaluations f(zo), f(z1),..., f(xk) for some set of selected

points xo,x1,...,TK.
» Model-based: construct local model of f, optimize using that function?.

» Gradient-based: approximate V f directly and apply gradient descent®.

2Conn, Scheinberg, and Vicente 2009.
3Nernirovsky and Yudin 1983; Flaxman, Kalai, and McMahan 2004; Nesterov and Spokoiny 2017.
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A first gradient-based approach

For any differentiable f : R — R

flx+90) - f(x)

Ouf(z) = 5 + 0(5).

4d'Aspremont 2008; Devolder, Glineur, and Nesterov 2014.
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A first gradient-based approach

For any differentiable f : R — R

flx+90) - f(x)

Ouf(z) = 5 + 0(5).

Then, run inexact (6 > 0) gradient descent

- :$k_ﬂkf(xk+5()5—f(ﬂfk).

4d'Aspremonv: 2008; Devolder, Glineur, and Nesterov 2014.
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A first gradient-based approach

For any differentiable f : R — R

flx+90) - f(x)

Ouf(z) = 5 + 0(5).

Then, run inexact (6 > 0) gradient descent

- :$k_ﬂkf(xk+5()5—f(ﬂfk).

When does f(zr) — f(z*)?

4d'Aspremonv: 2008; Devolder, Glineur, and Nesterov 2014.
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A first gradient-based approach

For any differentiable f : R — R

9o f(z) = w +O®).

Then, run inexact (6 > 0) gradient descent

f@r +9) — flax)
6

When does f(xx) — f(z*)? A bias prevails, f(xx) — f(z*) 4+ O(5).*

Lh+1 — Tk — MUk

4d'Aspremont 2008; Devolder, Glineur, and Nesterov 2014.
July 23 - OP21 5/16



A first gradient-based approach

For any differentiable f : R — R

9o f(z) = w +O®).

Then, run inexact (6 > 0) gradient descent

flze +0) = flan)

Lh+1 — Tk — MUk 5 .

When does f(xx) — f(z*)? A bias prevails, f(xx) — f(z*) 4+ O(5).*
Similarly, for f: R" - R

Vi(z) ~ Z wei'

4d'Aspremont 2008; Devolder, Glineur, and Nesterov 2014.
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A second gradient-based approach

Idea, recall
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A second gradient-based approach

Idea, recall

U x- [z de) — f(x)
Vi(z) ~ Z; e,
assume we find a random variable & such that

Vf(x) ~ Ee [Wf} . E~E.

Consider the randomized algorithm

[k +08) — flox)
1)

Tkl = Tk — [k
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A second gradient-based approach

Idea, recall

U x- [z de) — f(x)
Vi(z) ~ Z; e,
assume we find a random variable & such that

flz+68) = f(=)

Vf(x) ~ E¢ [ 5

5}7 E~E.

Consider the randomized algorithm

[k +08) — flox)
1)

£ &~E

Tkl = Tk — [k

Performance criteria is weaker but cleaner E¢[f (k)] — f(x*).
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Nemirovski and Yudin

Let f : R® — R, Nemirovski and Yudin® consider 6-smoothing

fs(z) = Eynpn [f(z + 0v)] = IB%" / flx 4+ dv)d (2a)
Vis(z) = ZIEUNSn L [fz + du)u] = %W‘/Snilf(x—i—du)ﬁdu.
(2b)

5Nemirovsky and Yudin 1983, credits usually given to Flaxman, Kalai, and McMahan 2004.
6Agarwa|, Dekel, and Xiao 2010; Nesterov 2011.
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Nemirovski and Yudin

Let f : R® — R, Nemirovski and Yudin® consider 6-smoothing

F5(®) = Bynn [f(z+ 00)] = /fx+<w (22)

VIs(0) = §Eunsns [f(o+ 0] = %w [ vt
gn—1 2

(2)

Natural one-point candidate to approximate V f

gs(z) = Ef(oc +ou)u, u~S" (3a)

=2}

5Nemirovsky and Yudin 1983, credits usually given to Flaxman, Kalai, and McMahan 2004.
6Agarwa|, Dekel, and Xiao 2010; Nesterov 2011.
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Nemirovski and Yudin

Let f : R® — R, Nemirovski and Yudin® consider 6-smoothing

F5(®) = Bynn [f(z+ 00)] = /fx+<w (22)

VIs(0) = §Eunsns [f(o+ 0] = %w [ vt
gn—1 2

(2)

Natural one-point candidate to approximate V f
n < n—1
gs(z) = gf(m +ou)u, u~S". (3a)

Observation®: give (3a) again the interpretation of a directional derivative

and use the multi-point oracle

gi(x) = = (fle+ou) - f(@)u, u~S""" (3b)

0\3

5Ns:mirovsky and Yudin 1983, credits usually given to Flaxman, Kalai, and McMahan 2004.
GAgarwal, Dekel, and Xiao 2010; Nesterov 2011.
July 23 - OP21 7/16



Nesterov and Spokoiny

For f : R™ — R (locally convex), Gaussian smoothing’

fr(z) = l f(z—i—“,/u)e_%”““gdu
R

/ fz+ ru f(w—vu)

~ L2
e 2 lullz 0

with [[Vf = V£,[ = O(n?).

7 Nesterov 2011; Nesterov and Spokoiny 2017.
July 23 - OP21
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Nesterov and Spokoiny

For f : R™ — R (locally convex), Gaussian smoothing’

= / F@ +~yu)e =113 gy (4a)

/fm+,u f@ =) sl g, (4b)

with [[Vf = V£,[ = O(n?).

Oracle: g, (z) = flot A’/u); f@ =) u, u~N(0,I,)

/

with Eunro,1,) [l97(2)|3] < O(n*y? +n||[Vf(2)]3).

Algorithm: x4 1 = 2% — prgy, (Tx), pe =0 (ﬁ) :

_ K-1
Performance: for vy — 0 and Zx_1 := — Tk
/ K k=0

n-L-|lwo — 2|3

Elf(Zx-1)] - f(z") <O (K) = O(n) - gradient descent

7 Nesterov 2011; Nesterov and Spokoiny 2017.
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Numerical considerations

All common oracles of the form

finite (forward) difference: fle+9, :;) — /@) u
flz+ du) — f(xz — ou)

20

central difference: u,
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Numerical considerations

All common oracles of the form

finite (forward) difference: fle+9, :;) — /@) u
flz+ du) — f(xz — ou)

20

central difference: u,

with approximation errors O(6%), p > 1, algorithms require J,, = O(3).

Can we pick § | 07
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Numerical considerations

All common oracles of the form

finite (forward) difference: fle+9, :;) — /@) u
flz+ du) — f(xz — ou)

20

central difference:

U,

with approximation errors O(6%), p > 1, algorithms require 5 = O(+).
Can we pick § | 07

For small 0, f(z + du) — f(x) < machine precision: cancellation error.
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Numerical considerations

All common oracles of the form

finite (forward) difference: fle+9, :;) — /@) u
flz+ du) — f(xz — ou)

20

central difference: u,

with approximation errors O(6%), p > 1, algorithms require J,, = O(3).

Can we pick § | 07

For small 0, f(z + du) — f(x) < machine precision: cancellation error.

Ignored (7) in most optimization literature.
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Beautiful insight from complex analysis

As pioneered by?, let f : R — R be real-analytic (f € C*(R)) and consider

Fla+18) = f(@) + 00 f (@)id — 502f(2)0% = 2025 (@)id® + O(5*), %=1,

8Lyness and Moler 1967; Squire and Trapp 1998; Martins, Sturdza, and Alonso 2003; Abreu et al. 2018.
9A value of § = 10100 (1) is successfully used in National Physical Laboratory software Cox and Harris 2004, Page 44.
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As pioneered by?, let f : R — R be real-analytic (f € C*(R)) and consider
Fla+18) = f(@) + 00 f (@)id — 502f(2)0% = 2025 (@)id® + O(5*), %=1,
such that (for z € C, z = R(2) + 3(2)):

S (f(a +i0)) = B (@)0 — GO (2)0° + O(7)
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Beautiful insight from complex analysis

As pioneered by?, let f : R — R be real-analytic (f € C*(R)) and consider
ﬂx+w):f@y+&f@y6f%$f@ﬁ27é@f@ﬁf+(%#x 2= 1,
such that (for z € C, z = R(2) + 3(2)):

S (f(a +i0)) = B (@)0 — GO (2)0° + O(7)

and thus

0 f () = M +0(5%),  f)=R(f(x+15))+O0(5).

8Lyness and Moler 1967; Squire and Trapp 1998; Martins, Sturdza, and Alonso 2003; Abreu et al. 2018.
9A value of § = 10100 (1) is successfully used in National Physical Laboratory software Cox and Harris 2004, Page 44.
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Beautiful insight from complex analysis

As pioneered by?, let f : R — R be real-analytic (f € C*(R)) and consider

Fla+18) = f(@) + 00 f (@)id — 502f(2)0% = 2025 (@)id® + O(5*), %=1,

such that (for z € C, z = R(2) + 3(2)):
S (f(a +i0)) = B (@)0 — GO (2)0° + O(7)

and thus

0 f () = M +0(5%),  f)=R(f(x+15))+O0(5).

Cancellation errors are impossible®.

8Lyness and Moler 1967; Squire and Trapp 1998; Martins, Sturdza, and Alonso 2003; Abreu et al. 2018.

9A value of § = 10100 (1) is successfully used in National Physical Laboratory software Cox and Harris 2004, Page 44.
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Example
For f(z) = x*, approximate V f(z) at € {—1,0,10} using

(forward difference) fra(z,0) = flz+9) - f(x)

=1, (52)
. x+90)— flx—9
(central difference)  fea(z,0) = A )26f( )7 (5b)
. S(f(x+i6
(complex step)  fes(z,0) = M (5¢)
and compare the error for § | 0.
100 10° - 10°
[VF(@) = fua(, 0] V1 (z) — fiax.0)] Vi () — fiaz.0)]
|Vf(@) ~ feal(z, )] |Vf (@) = fea(a, 8)] | |Vf(@) ~ fea(z,0)]
105 1V (@) = fs(a,0)] 105 1V (@) = fs(,0)] 105 FIVH(@) = fes(;0)|
1010 1010 1010
1010 ~10° 1010 ~10° 1010 ~10°
§ J 5
(a)z=-1 (b)z=0 (c) z =10
July 23 - OP21
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Complex-step oracle!!

Let f € C¥(D), then

f5(@) = Bonpn [R (f(z + i60))]
V(@) = % - Eyosnr [$ (Fla + idu)) ul

with ||V fs — V|2 < O(né?).

107he paper provides similar results for strong-convex and non-convex functions.
nJongenee\, Yue, and Kuhn 2021.
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Complex-step oracle!!

Let f € C¥(D), then

f5(@) = Bonpn [R (f(z + i60))]
V(@) = % - Eyosnr [$ (Fla + idu)) ul

with ||V fs — V|2 < O(né?).
Oracle: gs(z) = 23 (f(z +idu))u, u~S""".

with B, gn-1 [[|gs(2)]

3] < O(n*6* +nl|VF(2)]3)-

Algorithm: 41 = @k — pigs, (), pe =0 (ﬁ)

1 K-1

Performance: for f convex 651 = O(3) and Tx 1 := % > ,_, Tk

107he paper provides similar results for strong-convex and non-convex functions.
nJongenee\, Yue, and Kuhn 2021.
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Complex-step oracle!!
Let f € C¥(D), then

f5(@) = Bonpn [R (f(z + i60))]
V(@) = % - Eyosnr [$ (Fla + idu)) ul

with ||V fs — V|2 < O(né?).

Oracle: gs(z) = 23 (f(z +idu))u, u~S""".

with B, gn-1 [|lgs (@) ]3] < O(n*6* +n||Vf(2)]]3).
Algorithm: 41 = @k — pigs, (), pe =0 (ﬁ)

. _ K-1
Performance: for f convex 651 = O(3) and Tx 1 := % > ,_, Tk

|0 — 2|3

E[f(@x_1)] — f(z") <O ("L|K> — O(n) - gradient descent™.

107he paper provides similar results for strong-convex and non-convex functions.
nJongenee\, Yue, and Kuhn 2021.
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Example: worst function in the world

Consider the test function from Nesterov 2003, Section 2.1.2
fulz) = L (; (@) 4 77 @) — 202 4 ()2 ,xm) )
for 2o =0, L =107%, Li(f) = 4L and (z*) =1 —i/(n 4 1) with 2V
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Example: worst function in the world
Consider the test function from Nesterov 2003, Section 2.1.2
1 )
fn(z) =1L (2 [ (1) Jrz 2D ('L))Z + (x(n))Q:I 71,(1)) @)

for 2o =0, L =10"%, Li(f) = 4L and (z*)® =1 —i/(n 4 1) with 2

10710 \ 1010 X
CS 6 € (1074,1016) CS 6 € (1074,10716)
1015 ~GS 6 =107 ! ~GS 6=10"* ‘
GS§=10"8 1020 ~GS 6 =10"°

GS§ =101 GSé=10""
5 GS § =10"16 GS § = 1016 W
10”
10° 10° 102 10*
K K
(ia) Suboptimality gap f(Zx) — f* (ib) Suboptimality gap f(zk) — f*
for the test function (7). for the test function (7).

Figure: The single-point Complex-smoothing (CS) compared to the multi-point
Gaussian smoothing (GS) method from Nesterov and Spokoiny 2017.
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Example:

CS 6 € (1074,10716)
10° . GSfg 6 =101
GSfg 6 = 10716
~GSeg 6 = 1074
—16.
110 GSeq 0 =10
10°
K

() f(@x) —

10°

10~100 \
CS 6 € (107%,10716)
31— m)"
10200 E(l - xtnuh)
GSfg 6 = 10716

GSeg 6 =10716
107300 |

K

(d) fzx) = f

10°

f*. n=10°

10°

* n = 10°.

strong convexity f(z) = 3||z|3

10°

CS € (1074,10719)
10° . GSfg 6 = 10"
GSpq 6 = 10716
~GSeg 6 = 1074
16
1010 GSqq 6 =10
10° 10°
K

(b) f(Zx) —

10°

107100
CS 6 € (1074,10716)
(1 e EZl\
10200 E(l = [n+4)) .
GSfq 6 = 10716
soo CScg d =101
10°
10° 10°
K

(e) flzx) = f

f*. n =102

* n =102,

10°

, FCS §e (10-,1071%)
10 ..GSfg 6 = 1074
GSpg 6 = 10716
~GSeq 6 = 1074
GSey 6 = 10716
10 S
10 10
K

() f(Zx) — f*, n = 10"

100 -

CS 6 € (1074,10716)

-20
1097 5(1— m)}‘

GSrq 5: 10716
= —16.
1040 GSe 6 = 10
10° 10°
K
(f) flzx) — f*, n = 10"

Figure: The single-point Complex-smoothing (CS) compared to the multi-point
Gaussian smoothing (GS) method from Nesterov and Spokoiny 2017, Equation (55)
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Example: non-convex optimization

Consider a Rosenbrock optimization problem
minimize (1 —2™)? + 100 ((z® — (z)? 2. 8
tinimiz ( ) (( («)?) (8)
with z* = (1,1).

1.5
0
10 1
0.5
10-10 3; 0
-0.5
CS 0 = 10710/(K + l) 1
GSq 6 = 10710/(K +1)
1020 5 1.5
10 10 -1 0 1
K 2@
(a) Suboptimality gap f(zx) — f* (b) Paths taken corresponding to
for (8). Figure 4a.

Figure: The single-point Complex-smoothing (CS) method versus
Gaussian-smoothing Nesterov and Spokoiny 2017.
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The End

Many open problems remain. For more, see

(a) Arkadi Semenovich Nemirovsky and David Borisovich Yudin (1983). “Problem complexity and
method efficiency in optimization.”. In:

(b) Boris Teodorovich Polyak and Aleksandr Borisovich Tsybakov (1990). “Optimal order of
accuracy of search algorithms in stochastic optimization”. In: Problemy Peredachi Informatsii
26.2, pp. 45-53

(c) Abraham Flaxman, Adam Tauman Kalai, and H. Brendan McMahan (2004). “Online convex
optimization in the bandit setting: gradient descent without a gradient”. In: CoRR

(d) John C Duchi et al. (2015). “Optimal rates for zero-order convex optimization: The power of
two function evaluations”. In: |[EEE Transactions on Information Theory 61.5, pp. 2788-2806

(e) Francis Bach and Vianney Perchet (2016). “Highly-smooth zero-th order online optimization”.
In: Conference on Learning Theory, pp. 1-27

(f) Yurii Nesterov and Vladimir Spokoiny (2017). “Random gradient-free minimization of convex
functions”. In: Foundations of Computational Mathematics 17.2, pp. 527-566

(g) Wouter Jongeneel, Man-Chung Yue, and Daniel Kuhn (2021). “Small Errors in Random

Zeroth Order Optimization are Imaginary”. In: arXiv: 2103.05478

Thank you! contact: wjongeneel.nl or wouter.jongeneel@epfl.ch
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