Small Errors in Zeroth Order Optimization are Imaginary*

SIAM Conference on Optimization | July 19-23, 2021,

Wouter Jongeneel (RAO, EPFL) with Man-Chung Yue and Daniel Kuhn

*Based on: WJ, Man-Chung Yue, and Daniel Kuhn (2021). "Small Errors in Random Zeroth Order Optimization are Imaginary". arXiv:2103.05478

EPFL

The basic question

For $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$, how to find

 $x^* \in \operatorname*{argmin}_{x \in \mathcal{D}} f(x)$?

The basic question

For $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$, how to find

 $x^* \in \operatorname*{argmin}_{x \in \mathcal{D}} f(x)$?

Common approach: gradient descent

$$x_{k+1} = x_k - \mu_k \nabla f(x_k). \tag{1}$$

The basic question

For $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$, how to find

 $x^* \in \operatorname*{argmin}_{x \in \mathcal{D}} f(x)$?

Common approach: gradient descent

$$x_{k+1} = x_k - \mu_k \nabla f(x_k). \tag{1}$$

Let f be convex and differentiable with a L-Lipschitz gradient

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2, \quad \forall x, y \in \mathcal{D}$$

then for $\mu_k = \frac{1}{L}$ and x_0, x_1, \dots, x_{K-1} generated by (1) one obtains

$$f(x_{K-1}) - f(x^*) \le \mathcal{O}\left(\frac{L \cdot ||x_0 - x^*||_2^2}{K}\right).$$

Do we always have the gradient?

Let f represent aerodynamic performance and x represent design parameters, what is $\nabla f(x)?$

¹https://www.youtube.com/watch?v=-mAHCq2dnKk&ab_channel=KapilGaitonde

Do we always have the gradient?

Let f represent aerodynamic performance and x represent design parameters, what is $\nabla f(x)?$

Idea: we can evaluate f(x') for some design choice x'.¹

¹https://www.youtube.com/watch?v=-mAHCq2dnKk&ab_channel=KapilGaitonde

Zeroth order optimization

Obtain (approximate)

 $x^{\star} \in \operatorname*{argmin}_{x \in \mathcal{D}} f(x)$

via function evaluations $f(x_0), f(x_1), \ldots, f(x_K)$ for some set of selected points x_0, x_1, \ldots, x_K .

²Conn, Scheinberg, and Vicente 2009.

³Nemirovsky and Yudin 1983; Flaxman, Kalai, and McMahan 2004; Nesterov and Spokoiny 2017.

Zeroth order optimization

Obtain (approximate)

 $x^{\star} \in \operatorname*{argmin}_{x \in \mathcal{D}} f(x)$

via function evaluations $f(x_0), f(x_1), \ldots, f(x_K)$ for some set of selected points x_0, x_1, \ldots, x_K .

▶ *Model-based*: construct local model of *f*, optimize using that function².

²Conn, Scheinberg, and Vicente 2009.

³Nemirovsky and Yudin 1983; Flaxman, Kalai, and McMahan 2004; Nesterov and Spokoiny 2017.

Zeroth order optimization

Obtain (approximate)

 $x^{\star} \in \operatorname*{argmin}_{x \in \mathcal{D}} f(x)$

via function evaluations $f(x_0), f(x_1), \ldots, f(x_K)$ for some set of selected points x_0, x_1, \ldots, x_K .

▶ *Model-based*: construct local model of *f*, optimize using that function².

• Gradient-based: approximate ∇f directly and apply gradient descent³.

²Conn, Scheinberg, and Vicente 2009.

 $^{^3}$ Nemirovsky and Yudin 1983; Flaxman, Kalai, and McMahan 2004; Nesterov and Spokoiny 2017.

For any differentiable $f: \mathbb{R} \to \mathbb{R}$

$$\partial_x f(x) = \frac{f(x+\delta) - f(x)}{\delta} + \mathcal{O}(\delta).$$

⁴d'Aspremont 2008; Devolder, Glineur, and Nesterov 2014.

For any differentiable $f : \mathbb{R} \to \mathbb{R}$

$$\partial_x f(x) = rac{f(x+\delta) - f(x)}{\delta} + \mathcal{O}(\delta).$$

Then, run *inexact* ($\delta > 0$) gradient descent

$$x_{k+1} = x_k - \mu_k \frac{f(x_k + \delta) - f(x_k)}{\delta}.$$

⁴d'Aspremont 2008; Devolder, Glineur, and Nesterov 2014.

For any differentiable $f : \mathbb{R} \to \mathbb{R}$

$$\partial_x f(x) = rac{f(x+\delta) - f(x)}{\delta} + \mathcal{O}(\delta).$$

Then, run *inexact* ($\delta > 0$) gradient descent

$$x_{k+1} = x_k - \mu_k \frac{f(x_k + \delta) - f(x_k)}{\delta}.$$

When does $f(x_k) \to f(x^*)$?

⁴d'Aspremont 2008; Devolder, Glineur, and Nesterov 2014.

For any differentiable $f : \mathbb{R} \to \mathbb{R}$

$$\partial_x f(x) = rac{f(x+\delta) - f(x)}{\delta} + \mathcal{O}(\delta).$$

Then, run *inexact* ($\delta > 0$) gradient descent

$$x_{k+1} = x_k - \mu_k \frac{f(x_k + \delta) - f(x_k)}{\delta}$$

When does $f(x_k) \to f(x^*)$? A bias prevails, $f(x_k) \to f(x^*) + \mathcal{O}(\delta)$.⁴

⁴d'Aspremont 2008; Devolder, Glineur, and Nesterov 2014.

For any differentiable $f : \mathbb{R} \to \mathbb{R}$

$$\partial_x f(x) = rac{f(x+\delta) - f(x)}{\delta} + \mathcal{O}(\delta).$$

Then, run *inexact* ($\delta > 0$) gradient descent

$$x_{k+1} = x_k - \mu_k \frac{f(x_k + \delta) - f(x_k)}{\delta}$$

When does $f(x_k) \to f(x^*)$? A bias prevails, $f(x_k) \to f(x^*) + \mathcal{O}(\delta)$.⁴ Similarly, for $f : \mathbb{R}^n \to \mathbb{R}$

$$abla f(x) pprox \sum_{i=1}^{n} rac{f(x+\delta e_i) - f(x)}{\delta} e_i.$$

⁴d'Aspremont 2008; Devolder, Glineur, and Nesterov 2014.

A second gradient-based approach

Idea, recall

$$abla f(x) pprox \sum_{i=1}^{n} \frac{f(x+\delta e_i) - f(x)}{\delta} e_i,$$

A second gradient-based approach

Idea, recall

$$abla f(x) pprox \sum_{i=1}^{n} \frac{f(x+\delta e_i) - f(x)}{\delta} e_i,$$

assume we find a random variable ξ such that

$$\nabla f(x) \approx \mathbb{E}_{\xi} \left[\frac{f(x+\delta\xi) - f(x)}{\delta} \xi \right], \quad \xi \sim \Xi.$$

Consider the randomized algorithm

$$x_{k+1} = x_k - \mu_k \frac{f(x_k + \delta\xi) - f(x_k)}{\delta} \xi, \quad \xi \sim \Xi.$$

A second gradient-based approach

Idea, recall

$$abla f(x) pprox \sum_{i=1}^{n} rac{f(x+\delta e_i) - f(x)}{\delta} e_i,$$

assume we find a random variable ξ such that

$$\nabla f(x) \approx \mathbb{E}_{\xi} \left[\frac{f(x + \delta\xi) - f(x)}{\delta} \xi \right], \quad \xi \sim \Xi.$$

Consider the randomized algorithm

$$x_{k+1} = x_k - \mu_k \frac{f(x_k + \delta\xi) - f(x_k)}{\delta} \xi, \quad \xi \sim \Xi.$$

Performance criteria is weaker but cleaner $\mathbb{E}_{\xi}[f(x_k)] \to f(x^*)$.

Nemirovski and Yudin

Let $f : \mathbb{R}^n \to \mathbb{R}$, Nemirovski and Yudin⁵ consider δ -smoothing

$$f_{\delta}(x) = \mathbb{E}_{v \sim \mathbb{B}^n} \left[f(x + \delta v) \right] = \frac{1}{\operatorname{vol}(\mathbb{B}^n)} \int_{\mathbb{B}^n} f(x + \delta v) dv,$$
(2a)

$$\nabla f_{\delta}(x) = \frac{n}{\delta} \mathbb{E}_{u \sim \mathbb{S}^{n-1}} \left[f(x+\delta u)u \right] = \frac{n}{\delta} \frac{1}{\operatorname{vol}(\mathbb{S}^{n-1})} \int_{\mathbb{S}^{n-1}} f(x+\delta u) \frac{u}{\|u\|_2} du.$$
(2b)

 $^{^{5}}$ Nemirovsky and Yudin 1983, credits usually given to Flaxman, Kalai, and McMahan 2004.

⁶Agarwal, Dekel, and Xiao 2010; Nesterov 2011.

Nemirovski and Yudin

Let $f : \mathbb{R}^n \to \mathbb{R}$, Nemirovski and Yudin⁵ consider δ -smoothing

$$f_{\delta}(x) = \mathbb{E}_{v \sim \mathbb{B}^n} \left[f(x + \delta v) \right] = \frac{1}{\operatorname{vol}(\mathbb{B}^n)} \int_{\mathbb{B}^n} f(x + \delta v) dv,$$
(2a)

$$\nabla f_{\delta}(x) = \frac{n}{\delta} \mathbb{E}_{u \sim \mathbb{S}^{n-1}} \left[f(x+\delta u)u \right] = \frac{n}{\delta} \frac{1}{\operatorname{vol}(\mathbb{S}^{n-1})} \int_{\mathbb{S}^{n-1}} f(x+\delta u) \frac{u}{\|u\|_2} du.$$
(2b)

Natural *one-point* candidate to approximate ∇f

$$g_{\delta}(x) = \frac{n}{\delta} f(x + \delta u)u, \quad u \sim \mathbb{S}^{n-1}.$$
 (3a)

 $^{^{5}\}mathrm{Nemirovsky}$ and Yudin 1983, credits usually given to Flaxman, Kalai, and McMahan 2004.

⁶Agarwal, Dekel, and Xiao 2010; Nesterov 2011.

Nemirovski and Yudin

Let $f : \mathbb{R}^n \to \mathbb{R}$, Nemirovski and Yudin⁵ consider δ -smoothing

$$f_{\delta}(x) = \mathbb{E}_{v \sim \mathbb{B}^n} \left[f(x + \delta v) \right] = \frac{1}{\operatorname{vol}(\mathbb{B}^n)} \int_{\mathbb{B}^n} f(x + \delta v) dv,$$
(2a)

$$\nabla f_{\delta}(x) = \frac{n}{\delta} \mathbb{E}_{u \sim \mathbb{S}^{n-1}} \left[f(x+\delta u)u \right] = \frac{n}{\delta} \frac{1}{\operatorname{vol}(\mathbb{S}^{n-1})} \int_{\mathbb{S}^{n-1}} f(x+\delta u) \frac{u}{\|u\|_2} du.$$
(2b)

Natural *one-point* candidate to approximate ∇f

$$g_{\delta}(x) = \frac{n}{\delta} f(x + \delta u) u, \quad u \sim \mathbb{S}^{n-1}.$$
 (3a)

Observation⁶: give (3a) again the interpretation of a **directional derivative** and use the *multi-point* oracle

$$g'_{\delta}(x) = \frac{n}{\delta} \left(f(x + \delta u) - f(x) \right) u, \quad u \sim \mathbb{S}^{n-1}.$$
(3b)

⁵Nemirovsky and Yudin 1983, credits usually given to Flaxman, Kalai, and McMahan 2004.

⁶Agarwal, Dekel, and Xiao 2010; Nesterov 2011.

Nesterov and Spokoiny

For $f: \mathbb{R}^n \to \mathbb{R}$ (locally convex), *Gaussian* smoothing⁷

$$f_{\gamma}(x) = \frac{1}{\kappa} \int_{\mathbb{R}^n} f(x + \gamma u) e^{-\frac{1}{2} \|u\|_2^2} du$$
(4a)

$$\nabla f_{\gamma}(x) = \frac{1}{\kappa} \int_{\mathbb{R}^n} \frac{f(x+\gamma u) - f(x-\gamma u)}{2\gamma} e^{-\frac{1}{2} \|u\|_2^2} u du$$
(4b)

with $\|\nabla f - \nabla f_{\gamma}\| = \mathcal{O}(n\gamma^2).$

⁷Nesterov 2011; Nesterov and Spokoiny 2017.

Nesterov and Spokoiny

For $f : \mathbb{R}^n \to \mathbb{R}$ (locally convex), *Gaussian* smoothing⁷

$$f_{\gamma}(x) = \frac{1}{\kappa} \int_{\mathbb{R}^n} f(x + \gamma u) e^{-\frac{1}{2} \|u\|_2^2} du$$
 (4a)

$$\nabla f_{\gamma}(x) = \frac{1}{\kappa} \int_{\mathbb{R}^n} \frac{f(x+\gamma u) - f(x-\gamma u)}{2\gamma} e^{-\frac{1}{2} \|u\|_2^2} u du$$
(4b)

with $\|\nabla f - \nabla f_{\gamma}\| = \mathcal{O}(n\gamma^2).$

Oracle:
$$g_{\gamma}(x) = \frac{f(x+\gamma u) - f(x-\gamma u)}{2\gamma}u, \quad u \sim \mathcal{N}(0, I_n)$$

with $\mathbb{E}_{u \sim \mathcal{N}(0, I_n)} \left[\|g_{\gamma}(x)\|_2^2 \right] \leq \mathcal{O}(n^2 \gamma^2 + n \|\nabla f(x)\|_2^2).$

Algorithm: $x_{k+1} = x_k - \mu_k g_{\gamma_k}(x_k), \quad \mu_k = \mathcal{O}\left(\frac{1}{n \cdot L}\right).$ Performance: for $\gamma_k \to 0$ and $\bar{x}_{K-1} := \frac{1}{K} \sum_{k=0}^{K-1} x_k$

$$\mathbb{E}[f(\bar{x}_{K-1})] - f(x^{\star}) \le \mathcal{O}\left(\frac{n \cdot L \cdot \|x_0 - x^{\star}\|_2^2}{K}\right) = \mathcal{O}(n) \cdot \text{ gradient descent}$$

⁷Nesterov 2011; Nesterov and Spokoiny 2017.

All common oracles of the form

finite (forward) difference:
$$\frac{f(x+\delta,u)-f(x)}{\delta}u$$

central difference:
$$\frac{f(x+\delta u)-f(x-\delta u)}{2\delta}u,$$

All common oracles of the form

finite (forward) difference:
$$\frac{f(x+\delta, u) - f(x)}{\delta}u$$

central difference:
$$\frac{f(x+\delta u) - f(x-\delta u)}{2\delta}u,$$

with approximation errors $\mathcal{O}(\delta^p)$, $p \ge 1$, algorithms require $\delta_k = \mathcal{O}(\frac{1}{k})$.

Can we pick $\delta \downarrow 0$?

All common oracles of the form

finite (forward) difference:
$$\frac{f(x+\delta,u) - f(x)}{\delta}u$$

central difference:
$$\frac{f(x+\delta u) - f(x-\delta u)}{2\delta}u,$$

with approximation errors $\mathcal{O}(\delta^p)$, $p \ge 1$, algorithms require $\delta_k = \mathcal{O}(\frac{1}{k})$.

Can we pick $\delta \downarrow 0$?

For small δ , $f(x + \delta u) - f(x) \leq$ machine precision: *cancellation error*.

All common oracles of the form

finite (forward) difference:
$$\frac{f(x+\delta,u) - f(x)}{\delta}u$$

central difference:
$$\frac{f(x+\delta u) - f(x-\delta u)}{2\delta}u,$$

with approximation errors $\mathcal{O}(\delta^p)$, $p \ge 1$, algorithms require $\delta_k = \mathcal{O}(\frac{1}{k})$.

Can we pick $\delta \downarrow 0$?

For small δ , $f(x + \delta u) - f(x) \leq$ machine precision: *cancellation error*.

Ignored (?) in most optimization literature.

As pioneered by⁸, let $f:\mathbb{R}\to\mathbb{R}$ be real-analytic $(f\in C^{\omega}(\mathbb{R}))$ and consider

$$f(x+i\delta) = f(x) + \partial_x f(x)i\delta - \frac{1}{2}\partial_x^2 f(x)\delta^2 - \frac{1}{6}\partial_x^3 f(x)i\delta^3 + O(\delta^4), \quad i^2 = -1.$$

⁹A value of $\delta = 10^{-100}$ (!) is successfully used in National Physical Laboratory software Cox and Harris 2004, Page 44.

 $^{^{8}\}mathrm{Lyness}$ and Moler 1967; Squire and Trapp 1998; Martins, Sturdza, and Alonso 2003; Abreu et al. 2018.

As pioneered by⁸, let $f:\mathbb{R}\to\mathbb{R}$ be real-analytic $(f\in C^\omega(\mathbb{R}))$ and consider

$$f(x+i\delta) = f(x) + \partial_x f(x)i\delta - \frac{1}{2}\partial_x^2 f(x)\delta^2 - \frac{1}{6}\partial_x^3 f(x)i\delta^3 + O(\delta^4), \quad i^2 = -1.$$

such that (for $z \in \mathbb{C}$, $z = \Re(z) + \Im(z)$):

$$\Im \left(f(x+i\delta) \right) = \partial_x f(x)\delta - \frac{1}{6}\partial_x^3 f(x)\delta^3 + O(\delta^5)$$

⁸Lyness and Moler 1967; Squire and Trapp 1998; Martins, Sturdza, and Alonso 2003; Abreu et al. 2018.

 $^{^{9}}$ A value of $\delta = 10^{-100}$ (!) is successfully used in National Physical Laboratory software Cox and Harris 2004, Page 44.

As pioneered by⁸, let $f : \mathbb{R} \to \mathbb{R}$ be real-analytic ($f \in C^{\omega}(\mathbb{R})$) and consider

$$f(x+i\delta) = f(x) + \partial_x f(x)i\delta - \frac{1}{2}\partial_x^2 f(x)\delta^2 - \frac{1}{6}\partial_x^3 f(x)i\delta^3 + O(\delta^4), \quad i^2 = -1.$$

such that (for $z \in \mathbb{C}$, $z = \Re(z) + \Im(z)$):

$$\Im \left(f(x+i\delta) \right) = \partial_x f(x)\delta - \frac{1}{6}\partial_x^3 f(x)\delta^3 + O(\delta^5)$$

and thus

$$\partial_x f(x) = \frac{\Im \left(f(x+i\delta) \right)}{\delta} + O(\delta^2), \quad f(x) = \Re (f(x+i\delta)) + O(\delta^2).$$

 8 Lyness and Moler 1967; Squire and Trapp 1998; Martins, Sturdza, and Alonso 2003; Abreu et al. 2018. 9 A value of $\delta = 10^{-100}$ (!) is successfully used in National Physical Laboratory software Cox and Harris 2004, Page 44.

As pioneered by⁸, let $f : \mathbb{R} \to \mathbb{R}$ be real-analytic $(f \in C^{\omega}(\mathbb{R}))$ and consider

$$f(x+i\delta) = f(x) + \partial_x f(x)i\delta - \frac{1}{2}\partial_x^2 f(x)\delta^2 - \frac{1}{6}\partial_x^3 f(x)i\delta^3 + O(\delta^4), \quad i^2 = -1.$$

such that (for $z \in \mathbb{C}$, $z = \Re(z) + \Im(z)$):

$$\Im \left(f(x+i\delta) \right) = \partial_x f(x)\delta - \frac{1}{6}\partial_x^3 f(x)\delta^3 + O(\delta^5)$$

and thus

$$\partial_x f(x) = \frac{\Im \left(f(x+i\delta) \right)}{\delta} + O(\delta^2), \quad f(x) = \Re (f(x+i\delta)) + O(\delta^2).$$

Cancellation errors are impossible⁹.

 9 A value of $\delta = 10^{-100}$ (!) is successfully used in National Physical Laboratory software Cox and Harris 2004, Page 44.

⁸Lyness and Moler 1967; Squire and Trapp 1998; Martins, Sturdza, and Alonso 2003; Abreu et al. 2018.

Example

For $f(x)=x^3,$ approximate $\nabla f(x)$ at $x\in\{-1,0,10\}$ using

(forward difference)
$$f_{\sf fd}(x,\delta) = rac{f(x+\delta)-f(x)}{\delta},$$
 (5a)

(central difference)
$$f_{cd}(x,\delta) = \frac{f(x+\delta) - f(x-\delta)}{2\delta}$$
, (5b)

(complex step)
$$f_{cs}(x, \delta) = \frac{\Im \left(f(x + i\delta)\right)}{\delta}$$
 (5c)

and compare the error for $\delta \downarrow 0$.

Complex-step oracle¹¹

Let $f \in C^{\omega}(\mathcal{D})$, then

$$f_{\delta}(x) = \mathbb{E}_{v \sim \mathbb{B}^n} \left[\Re \left(f(x + i\delta v) \right) \right]$$
$$\nabla f_{\delta}(x) = \frac{n}{\delta} \cdot \mathbb{E}_{u \sim \mathbb{S}^{n-1}} \left[\Im \left(f(x + i\delta u) \right) u \right]$$

with $\|\nabla f_{\delta} - \nabla f\|_2 \leq \mathcal{O}(n\delta^2)$.

 $^{^{10}\}mathrm{The}$ paper provides similar results for strong-convex and non-convex functions.

¹¹ Jongeneel, Yue, and Kuhn 2021.

Complex-step oracle¹¹

Let $f \in C^{\omega}(\mathcal{D})$, then

$$f_{\delta}(x) = \mathbb{E}_{v \sim \mathbb{B}^n} \left[\Re \left(f(x+i\delta v) \right) \right]$$
$$\nabla f_{\delta}(x) = \frac{n}{\delta} \cdot \mathbb{E}_{u \sim \mathbb{S}^{n-1}} \left[\Im \left(f(x+i\delta u) \right) u \right]$$

with $\|\nabla f_{\delta} - \nabla f\|_2 \leq \mathcal{O}(n\delta^2)$.

Oracle: $g_{\delta}(x) = \frac{n}{\delta} \Im \left(f(x + i\delta u) \right) u, \quad u \sim \mathbb{S}^{n-1}.$

with $\mathbb{E}_{u \sim \mathbb{S}^{n-1}} \left[\|g_{\delta}(x)\|_2^2 \right] \leq \mathcal{O}(n^2 \delta^2 + n \|\nabla f(x)\|_2^2).$

Algorithm: $x_{k+1} = x_k - \mu_k g_{\delta_k}(x_k), \quad \mu_k = \mathcal{O}\left(\frac{1}{n \cdot L}\right)$ Performance: for f convex $\delta_{k-1} = \mathcal{O}(\frac{1}{k})$ and $\bar{x}_{K-1} := \frac{1}{K} \sum_{k=0}^{K-1} x_k$

¹⁰The paper provides similar results for strong-convex and non-convex functions.

¹¹ Jongeneel, Yue, and Kuhn 2021.

Complex-step oracle¹¹

Let $f \in C^{\omega}(\mathcal{D})$, then

$$f_{\delta}(x) = \mathbb{E}_{v \sim \mathbb{B}^n} \left[\Re \left(f(x + i\delta v) \right) \right]$$
$$\nabla f_{\delta}(x) = \frac{n}{\delta} \cdot \mathbb{E}_{u \sim \mathbb{S}^{n-1}} \left[\Im \left(f(x + i\delta u) \right) u \right]$$

with $\|\nabla f_{\delta} - \nabla f\|_2 \leq \mathcal{O}(n\delta^2)$.

Oracle: $g_{\delta}(x) = \frac{n}{\delta} \Im \left(f(x + i\delta u) \right) u, \quad u \sim \mathbb{S}^{n-1}.$

with $\mathbb{E}_{u \sim \mathbb{S}^{n-1}} \left[\|g_{\delta}(x)\|_2^2 \right] \leq \mathcal{O}(n^2 \delta^2 + n \|\nabla f(x)\|_2^2).$

Algorithm: $x_{k+1} = x_k - \mu_k g_{\delta_k}(x_k), \quad \mu_k = \mathcal{O}\left(\frac{1}{n \cdot L}\right)$ Performance: for f convex $\delta_{k-1} = \mathcal{O}(\frac{1}{k})$ and $\bar{x}_{K-1} := \frac{1}{K} \sum_{k=0}^{K-1} x_k$

$$\mathbb{E}[f(\bar{x}_{K-1})] - f(x^{\star}) \le \mathcal{O}\left(\frac{n \cdot L \cdot \|x_0 - x^{\star}\|_2^2}{K}\right) = \mathcal{O}(n) \cdot \text{ gradient descent}^{10}.$$

¹⁰The paper provides similar results for strong-convex and non-convex functions.

¹¹ Jongeneel, Yue, and Kuhn 2021.

Example: worst function in the world

Consider the test function from Nesterov 2003, Section 2.1.2

$$f_n(x) = L\left(\frac{1}{2}\left[(x^{(1)})^2 + \sum_{i=1}^{n-1} (x^{(i+1)} - x^{(i)})^2 + (x^{(n)})^2\right] - x^{(1)}\right)$$
(7)

for $x_0 = 0$, $L = 10^{-8}$, $L_1(f) = 4L$ and $(x^{\star})^{(i)} = 1 - i/(n+1)$ with $x^{(i)}$.

Example: worst function in the world

Consider the test function from Nesterov 2003, Section 2.1.2

$$f_n(x) = L\left(\frac{1}{2}\left[(x^{(1)})^2 + \sum_{i=1}^{n-1} (x^{(i+1)} - x^{(i)})^2 + (x^{(n)})^2\right] - x^{(1)}\right)$$
(7)

for $x_0 = 0$, $L = 10^{-8}$, $L_1(f) = 4L$ and $(x^{\star})^{(i)} = 1 - i/(n+1)$ with $x^{(i)}$.

(ia) Suboptimality gap $f(\bar{x}_K) - f^*$ for the test function (7).

(ib) Suboptimality gap $f(x_K) - f^*$ for the test function (7).

Figure: The single-point Complex-smoothing (CS) compared to the multi-point Gaussian smoothing (GS) method from Nesterov and Spokoiny 2017.

Example: strong convexity $f(x) = \frac{1}{2} ||x||_2^2$

Figure: The single-point Complex-smoothing (CS) compared to the multi-point Gaussian smoothing (GS) method from Nesterov and Spokoiny 2017, Equation (55). $_{14/16}$

Example: non-convex optimization

Consider a Rosenbrock optimization problem

$$\begin{array}{l} \underset{x \in \sqrt{2}\mathbb{B}^2}{\text{minimize}} & (1 - x^{(1)})^2 + 100 \left((x^{(2)} - (x^{(1)})^2 \right)^2. \\ x^{\star} = (1, 1). \end{array} \tag{8}$$

(a) Suboptimality gap $f(x_K) - f^*$ for (8).

(b) Paths taken corresponding to Figure 4a.

Figure: The single-point Complex-smoothing (CS) method versus Gaussian-smoothing Nesterov and Spokoiny 2017.

July 23 - OP21

with

The End

Many open problems remain. For more, see

- (a) Arkadi Semenovich Nemirovsky and David Borisovich Yudin (1983). "Problem complexity and method efficiency in optimization.". In:
- (b) Boris Teodorovich Polyak and Aleksandr Borisovich Tsybakov (1990). "Optimal order of accuracy of search algorithms in stochastic optimization". In: *Problemy Peredachi Informatsii* 26.2, pp. 45–53
- (c) Abraham Flaxman, Adam Tauman Kalai, and H. Brendan McMahan (2004). "Online convex optimization in the bandit setting: gradient descent without a gradient". In: *CoRR*
- (d) John C Duchi et al. (2015). "Optimal rates for zero-order convex optimization: The power of two function evaluations". In: IEEE Transactions on Information Theory 61.5, pp. 2788–2806
- (e) Francis Bach and Vianney Perchet (2016). "Highly-smooth zero-th order online optimization". In: Conference on Learning Theory, pp. 1–27
- (f) Yurii Nesterov and Vladimir Spokoiny (2017). "Random gradient-free minimization of convex functions". In: Foundations of Computational Mathematics 17.2, pp. 527–566
- (g) Wouter Jongeneel, Man-Chung Yue, and Daniel Kuhn (2021). "Small Errors in Random Zeroth Order Optimization are Imaginary". In: arXiv: 2103.05478

Thank you! contact: wjongeneel.nl or wouter.jongeneel@epfl.ch