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The basic question

For f : D ⊆ Rn → R, how to find

x? ∈ argmin
x∈D

f(x) ?

Common approach: gradient descent

xk+1 = xk − µk∇f(xk). (1)

Let f be convex and differentiable with a L-Lipschitz gradient

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2, ∀x, y ∈ D,

then for µk = 1
L

and x0, x1, . . . , xK−1 generated by (1) one obtains

f(xK−1)− f(x?) ≤ O
(
L · ‖x0 − x?‖2

2

K

)
.

July 23 - OP21 2/16



The basic question

For f : D ⊆ Rn → R, how to find

x? ∈ argmin
x∈D

f(x) ?

Common approach: gradient descent

xk+1 = xk − µk∇f(xk). (1)

Let f be convex and differentiable with a L-Lipschitz gradient

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2, ∀x, y ∈ D,

then for µk = 1
L

and x0, x1, . . . , xK−1 generated by (1) one obtains

f(xK−1)− f(x?) ≤ O
(
L · ‖x0 − x?‖2

2

K

)
.

July 23 - OP21 2/16



The basic question

For f : D ⊆ Rn → R, how to find

x? ∈ argmin
x∈D

f(x) ?

Common approach: gradient descent

xk+1 = xk − µk∇f(xk). (1)

Let f be convex and differentiable with a L-Lipschitz gradient

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2, ∀x, y ∈ D,

then for µk = 1
L

and x0, x1, . . . , xK−1 generated by (1) one obtains

f(xK−1)− f(x?) ≤ O
(
L · ‖x0 − x?‖2

2

K

)
.

July 23 - OP21 2/16



Do we always have the gradient?

Let f represent aerodynamic performance and x represent design parameters,
what is ∇f(x)?

Idea: we can evaluate f(x′) for some design choice x′. 1

1https://www.youtube.com/watch?v=-mAHCq2dnKk&ab_channel=KapilGaitonde
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Zeroth order optimization

Obtain (approximate)
x? ∈ argmin

x∈D
f(x)

via function evaluations f(x0), f(x1), . . . , f(xK) for some set of selected
points x0, x1, . . . , xK .

I Model-based : construct local model of f , optimize using that function2.
I Gradient-based : approximate ∇f directly and apply gradient descent3.

2Conn, Scheinberg, and Vicente 2009.
3Nemirovsky and Yudin 1983; Flaxman, Kalai, and McMahan 2004; Nesterov and Spokoiny 2017.
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A first gradient-based approach

For any differentiable f : R→ R

∂xf(x) = f(x+ δ)− f(x)
δ

+O(δ).

Then, run inexact (δ > 0) gradient descent

xk+1 = xk − µk
f(xk + δ)− f(xk)

δ
.

When does f(xk)→ f(x?)? A bias prevails, f(xk)→ f(x?) +O(δ).4

Similarly, for f : Rn → R

∇f(x) ≈
n∑
i=1

f(x+ δei)− f(x)
δ

ei.

4d’Aspremont 2008; Devolder, Glineur, and Nesterov 2014.
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A second gradient-based approach

Idea, recall

∇f(x) ≈
n∑
i=1

f(x+ δei)− f(x)
δ

ei,

assume we find a random variable ξ such that

∇f(x) ≈ Eξ
[
f(x+ δξ)− f(x)

δ
ξ

]
, ξ ∼ Ξ.

Consider the randomized algorithm

xk+1 = xk − µk
f(xk + δξ)− f(xk)

δ
ξ, ξ ∼ Ξ.

Performance criteria is weaker but cleaner Eξ[f(xk)]→ f(x?).
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Nemirovski and Yudin

Let f : Rn → R, Nemirovski and Yudin5 consider δ-smoothing

fδ(x) = Ev∼Bn [f(x+ δv)] = 1
vol(Bn)

∫
Bn
f(x+ δv)dv, (2a)

∇fδ(x) = n

δ
Eu∼Sn−1 [f(x+ δu)u] = n

δ

1
vol(Sn−1)

∫
Sn−1

f(x+ δu) u

‖u‖2
du.

(2b)

Natural one-point candidate to approximate ∇f

gδ(x) = n

δ
f(x+ δu)u, u ∼ Sn−1. (3a)

Observation6: give (3a) again the interpretation of a directional derivative
and use the multi-point oracle

g′δ(x) = n

δ
(f(x+ δu)− f(x))u, u ∼ Sn−1. (3b)

5Nemirovsky and Yudin 1983, credits usually given to Flaxman, Kalai, and McMahan 2004.
6Agarwal, Dekel, and Xiao 2010; Nesterov 2011.
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Nesterov and Spokoiny

For f : Rn → R (locally convex), Gaussian smoothing7

fγ(x) = 1
κ

∫
Rn
f(x+ γu)e−

1
2 ‖u‖

2
2du (4a)

∇fγ(x) = 1
κ

∫
Rn

f(x+ γu)− f(x− γu)
2γ e−

1
2 ‖u‖

2
2udu (4b)

with ‖∇f −∇fγ‖ = O(nγ2).

Oracle: gγ(x) = f(x+ γu)− f(x− γu)
2γ u, u ∼ N (0, In)

with Eu∼N (0,In)
[
‖gγ(x)‖2

2
]
≤ O(n2γ2 + n‖∇f(x)‖2

2).

Algorithm: xk+1 = xk − µkgγk (xk), µk = O
(

1
n·L

)
.

Performance: for γk → 0 and x̄K−1 := 1
K

∑K−1
k=0 xk

E[f(x̄K−1)]− f(x?) ≤ O
(
n · L · ‖x0 − x?‖2

2

K

)
= O(n) · gradient descent

7Nesterov 2011; Nesterov and Spokoiny 2017.
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Numerical considerations

All common oracles of the form

finite (forward) difference: f(x+ δ, u)− f(x)
δ

u

central difference: f(x+ δu)− f(x− δu)
2δ u,

with approximation errors O(δp), p ≥ 1, algorithms require δk = O( 1
k

).

Can we pick δ ↓ 0?

For small δ, f(x+ δu)− f(x) ≤ machine precision: cancellation error.

Ignored (?) in most optimization literature.
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Beautiful insight from complex analysis

As pioneered by8, let f : R→ R be real-analytic (f ∈ Cω(R)) and consider

f(x+ iδ) = f(x) + ∂xf(x)iδ− 1
2∂

2
xf(x)δ2 − 1

6∂
3
xf(x)iδ3 +O(δ4), i2 = −1.

such that (for z ∈ C, z = <(z) + =(z)):

= (f(x+ iδ)) = ∂xf(x)δ − 1
6∂

3
xf(x)δ3 +O(δ5)

and thus

∂xf(x) =
=
(
f(x+ iδ)

)
δ

+O(δ2), f(x) = <(f(x+ iδ)) +O(δ2).

Cancellation errors are impossible9.

8Lyness and Moler 1967; Squire and Trapp 1998; Martins, Sturdza, and Alonso 2003; Abreu et al. 2018.
9A value of δ = 10−100 (!) is successfully used in National Physical Laboratory software Cox and Harris 2004, Page 44.
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Example

For f(x) = x3, approximate ∇f(x) at x ∈ {−1, 0, 10} using

(forward difference) ffd(x, δ) = f(x+ δ)− f(x)
δ

, (5a)

(central difference) fcd(x, δ) = f(x+ δ)− f(x− δ)
2δ , (5b)

(complex step) fcs(x, δ) = = (f(x+ iδ))
δ

(5c)

and compare the error for δ ↓ 0.

(a) x = −1 (b) x = 0 (c) x = 10
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Complex-step oracle11

Let f ∈ Cω(D), then

fδ(x) = Ev∼Bn [< (f(x+ iδv))]

∇fδ(x) = n
δ
· Eu∼Sn−1 [= (f(x+ iδu))u]

with ‖∇fδ −∇f‖2 ≤ O(nδ2).

Oracle: gδ(x) = n
δ
= (f(x+ iδu))u, u ∼ Sn−1.

with Eu∼Sn−1
[
‖gδ(x)‖2

2
]
≤ O(n2δ2 + n‖∇f(x)‖2

2).

Algorithm: xk+1 = xk − µkgδk (xk), µk = O
(

1
n·L

)
Performance: for f convex δk−1 = O( 1

k
) and x̄K−1 := 1

K

∑K−1
k=0 xk

E[f(x̄K−1)]− f(x?) ≤ O
(
n · L · ‖x0 − x?‖2

2

K

)
= O(n) · gradient descent10.

10The paper provides similar results for strong-convex and non-convex functions.
11Jongeneel, Yue, and Kuhn 2021.
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Example: worst function in the world

Consider the test function from Nesterov 2003, Section 2.1.2

fn(x) = L
(1

2
[
(x(1))2 +

∑n−1
i=1 (x(i+1) − x(i))2 + (x(n))2]− x(1)

)
(7)

for x0 = 0, L = 10−8, L1(f) = 4L and (x?)(i) = 1− i/(n+ 1) with x(i).

(ia) Suboptimality gap f(x̄K) − f?

for the test function (7).
(ib) Suboptimality gap f(xK) − f?

for the test function (7).

Figure: The single-point Complex-smoothing (CS) compared to the multi-point
Gaussian smoothing (GS) method from Nesterov and Spokoiny 2017.
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Example: strong convexity f(x) = 1
2‖x‖2

2

(a) f(x̄K) − f?, n = 100. (b) f(x̄K) − f?, n = 102. (c) f(x̄K) − f?, n = 104.

(d) f(xK) − f?, n = 100. (e) f(xK) − f?, n = 102. (f) f(xK) − f?, n = 104.

Figure: The single-point Complex-smoothing (CS) compared to the multi-point
Gaussian smoothing (GS) method from Nesterov and Spokoiny 2017, Equation (55).
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Example: non-convex optimization

Consider a Rosenbrock optimization problem

minimize
x∈
√

2B2
(1− x(1))2 + 100

(
(x(2) − (x(1))2)2

. (8)

with x? = (1, 1).

(a) Suboptimality gap f(xK) − f?

for (8).
(b) Paths taken corresponding to
Figure 4a.

Figure: The single-point Complex-smoothing (CS) method versus
Gaussian-smoothing Nesterov and Spokoiny 2017.
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The End

Many open problems remain. For more, see
(a) Arkadi Semenovich Nemirovsky and David Borisovich Yudin (1983). “Problem complexity and

method efficiency in optimization.”. In:

(b) Boris Teodorovich Polyak and Aleksandr Borisovich Tsybakov (1990). “Optimal order of
accuracy of search algorithms in stochastic optimization”. In: Problemy Peredachi Informatsii
26.2, pp. 45–53

(c) Abraham Flaxman, Adam Tauman Kalai, and H. Brendan McMahan (2004). “Online convex
optimization in the bandit setting: gradient descent without a gradient”. In: CoRR

(d) John C Duchi et al. (2015). “Optimal rates for zero-order convex optimization: The power of
two function evaluations”. In: IEEE Transactions on Information Theory 61.5, pp. 2788–2806

(e) Francis Bach and Vianney Perchet (2016). “Highly-smooth zero-th order online optimization”.
In: Conference on Learning Theory, pp. 1–27

(f) Yurii Nesterov and Vladimir Spokoiny (2017). “Random gradient-free minimization of convex
functions”. In: Foundations of Computational Mathematics 17.2, pp. 527–566

(g) Wouter Jongeneel, Man-Chung Yue, and Daniel Kuhn (2021). “Small Errors in Random

Zeroth Order Optimization are Imaginary”. In: arXiv: 2103.05478

Thank you! contact: wjongeneel.nl or wouter.jongeneel@epfl.ch
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